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CHAPTER I

INTRODUCTION

1.1 Outline of the present work

One of the main tasks of quantum-chemistry is to calculate accurate 
wave functions for atomic and molecular systems. When the exact wave 
function for a system is known, all observable quantities of that system can 
be computed from the wave function. Wave functions computed are tested 
by comparing calculated properties with experimental ones. Examples of 
quantities frequently used for this purpose are: heat of formation, spectral 
transition energies, dipole moment and ionization energy. Some of these 
quantities, however, do not give a good test of the computed wave function. 
The same value of the dipole moment for instance can be computed from a 
number of wave functions, some of which give a rather poor agreement with 
the exact wave function. For this reason more direct tests for approximate 
wave functions are desirable. The observable quantity most directly connect
ed with the wave function, (which is not an observable), is the electron den
sity. The relation between the electron density (p)-and the wave function (i//) 
is given by:

p(r) = <//* (r) ip (r) (1.1)

In this equation \jj* means the complex conjugate of \p.

A method by which the electron density can be determined is X-ray 
diffraction. The electron density at a point in the unit cell of a single-crystal 
can be described by:

P(r) = V 1 j£ Aj, exp ( -  2wi h.r) ( l .2)

in which V is the volume of the unit cell and is a complex constant associat
ed with the reciprocal lattice vector h. The summation has to be carried out 
for all possible reciprocal lattice vectors.

According to the theory of X-ray diffraction (James, 1948, chapter 7) 
the constants A^ of eq. (1.2) are equal to the structure factors of the 
X-ray reflexions from the reflecting planes (h!h2h3).
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Ah = Fh (1.3)

h= hia* + h2b* + h3c* (14)

a*, b*, and c* are the basis vectors of the reciprocal unit cell.

The absolute value of the structure factor is a quantity measurable by 
X-ray diffraction. The phase of the structure factor (or its sign in case of a 
centrosymmetric structure) cannot be determined directly from X-ray measure
ments. The determination of phase angles constitutes the main problem in X- 
ray crystallography.

When the phase problem for a given structure has been solved, equations 
(1.2) and (1.3) give the relation between the electron density and experimental 
quantities.

Until recently X-ray single-crystal diffractometry has been used almost 
exclusively for the determination of structural parameters, such as cell dimen
sions and atomic positions. In the last decade, however, it has been realised 
that valuable information on electron densities may be obtained from diffrac
tion experiments. One of the most interesting problems which can be studied 
by X-ray diffraction is the redistribution of charge which takes place when 
atoms combine to form a molecule. A short review of the methods used in the 
determination of electron distributions by X-rays and the difficulties associated 
with them is given in section 1.2.

In this thesis mainly work done on uronium nitrate will be described. 
Uronium nitrate was chosen since it is a stable compound composed of relative
ly small groups of light atoms. Furthermore an interesting chemical question 
related to the site of protonation in salts of urea, could be solved by X-ray 
methods. These chemical aspects and previous work on the structures of salts 
of urea will be reviewed in section 1.3.

1.2 Determination of electron density by means of X-ray analysis.

The accuracy of X-ray structure determinations has increased consider
ably during the last decades especially by the introduction of single-crystal 
diffractometers for the measurement of intensities. Evidence for this increase 
is the fact that determination and refinement of the positions of hydrogen 
atoms (even in the presence of heavy atoms) has become more or less a stan
dard routine in X-ray crystallography.

The increasing accuracy has also raised the important question whether 
the model commonly used in X-ray crystallography is appropriate to des
cribe the details of the diffraction experiments. The normal model used for
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calculating scattering factors consists of spherical atoms in their ground state 
(James, 1962). Scattering factors based on this model are used almost ex
clusively in X-ray crystallography. As the electron density in a molecule is not 
simply the sum of the electron densities of the constituent atoms (Ransil and 
Sinai, 1967) one expects that better models are needed to describe the details 
of accurate diffraction experiments. These better models should allow for the 
redistribution in electron density which occurs when chemical bonds are 
formed.

Several investigators have calculated atomic scattering factors based on 
atoms in their valence state (McWeeny, 1951; Dawson, 1964). Scattering 
factors computed in this way can be based on aspherical electron densities of 
hybridised states. The application of these valence-state scattering factors to 
uronium nitrate will be described in chapter V. The semi-empirical quantum- 
chemical calculations and the wave functions necessary for the construction 
of the atomic scattering factors will be given in chapter IV.

Methods for taking into account the scattering of the so-called overlap 
densities have been given in the literature (McWeeny, 1952, 1953; Stewart, 
1969). Calculations along these lines will be reported in chapter V.

Computations of X-ray scattering factors from ab initio molecular wave 
functions have been used in a few cases (Groenewegen and Feil, 1969; Jones 
and Lipscomb, 1970). A first attempt to calculate elements of the charge- 
bond order matrix from X-ray diffraction experiments is given by Coppens 
et al. (1970).

Studies to visualize the distribution of bonding electron density from 
X-ray experiments are difficult, because of the fact that there is a great deal 
of correlation between the effect one wishes to determine and the positional 
and thermal parameters of the different atoms. The effect of bonding elec
trons is compensated by an ‘adjustment’ of thermal and positional parameters. 
It is a well-known fact that lengths of bonds involving hydrogen are always too 
short when determined by X-ray diffraction (Jones and Lipscomb, 1970). Ther
mal parameters determined for hydrogen atoms, using scattering factors com
puted for the ground state, have little physical significance (Stewart et al. 1965).

Despite these problems a number of investigations has shown that in 
accurate X-ray diffraction analysis the effect of chemical bonding is not 
negligible. A survey of the results is given by O’Connell et al. (1966).

In view of these difficulties another method for determination of 
positional and thermal parameters is needed. For this purpose elastic neutron 
diffraction can be used. As the scattering of neutrons takes place at the 
atomic nucleus (Bacon, 1955) this technique gives accurate data on position 
and motion of the atomic nucleus. Including parameters obtained by neutron 
diffraction in X-ray experiments can prevent a great deal of the correlation 
problems described above.
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A number of investigations on the same compound by neutron and 
X-ray diffraction has been carried out. Examples are given by Coppens et al. 
(1969) and Duckworth et al. (1970). The results of these investigations in
dicate clearly that the redistribution of charge in a molecule as a result of 
chemical bonding is a measurable effect.

In the case of uronium nitrate a neutron diffraction study was made 
independently of our work. The results of this work by Worsham and Busing 
(1969) will be compared with our work in chapter III.

1.3 Review of previous work on the structure of salts of (thio)amides
The site of protonation in (thio)amide cations has been disputed in 

the chemical literature for a long time. The two possible structures for the 
protonated (thio) urea cation ((thio) uronium ion) are given in fig 1.1

Fig. 1.1 - Two possible structures for the (thio)uronium ion

On theoretical grounds structure I is preferred, owing to its greater resonance 
energy. A review of the literature until 1961 is given by Jones and Katritzky 
(1961). More recent investigations have been summarized by Stewart and 
Siddall (1970).

The infrared spectra of (thio)urea and (thio)uronium nitrate have been 
the subject of a number of studies. From the spectrum of uronium nitrate 
Davies and Hopkins (1957) concluded that the acidic proton was attached to 
one of the NH2 -groups.

The investigation of Spinner (1959) gave the same results, although his 
conclusions did not agree with that of Davies and Hopkins in all points. 
Their arguments were mainly based on the absence of a clearly identifiable 
OH-bond in the 3ju region. The conclusions of Janssen (1961) and Kutzel- 
nigg andMecke (1961a, 1961b) are in contradiction with the above-mentioned 
results. They conclude that the proton is attached to the oxygen (sulphur) 
atom. The absence of the OH-absorption in the normal position is explained 
by the presence of strong hydrogen bonds.
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From nuclear magnetic resonance experiments Birchall and Gillespie 
(1963) conclude that the protonation of thiourea in fluorosulphuric acid 
takes place at the sulphur atom. For urea no conclusion could be drawn, the 
proton exchange being too fast, even at -80°C. Evidence is given that protona
tion of other amides takes place at the oxygen atom. The same results as to 
the site of protonation are given by the experiments of Redpath and Smith 
(1962) on polycrystalline samples of urea and thiourea salts.

X-ray structure determinations of (thio)urea salts have been carried out 
on a few salts of urea. The results of structure determinations of urea phos
phate (Sundera-Rao et al. 1957) and N-methyluronium nitrate (Bryden, 1957) 
although of limited accuracy indicated that the proton becomes attached to 
the oxygen atom. The structure determination of urea oxalic acid (Harkema 
et al. 1971) indicated that this compound does not exist as uronium and 
oxalate ions, but as urea and oxalic acid molecules.

In view of the discrepancies described above, a number of structure 
determinations of urea and thiourea compounds was started in this laboratory. 
The de terminations include: thiouronium nitrate (Feil and Song Loong, 1968); 
uronium nitrate (Harkema and Feil, 1969); N-methyluronium nitrate (Selman 
and Harkema, 1971) and urea oxalic acid (Harkema et al. 1971). This thesis 
will describe mainly work done on uronium nitrate. The determination of the 
structure is described in chapter II.
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CHAPTER II

DETERMINATION OF THE CRYSTAL STRUCTURE 
OF URONIUM NITRATE

2.1 Preparation of the crystals.

Uronium nitrate (C0(NH2)2H.N03) was prepared by adding nitric acid 
to a concentrated solution of urea in water. Uronium nitrate, which is sparing
ly soluble in water, is precipitated as small crystals. Attempts to recrystallize 
uronium nitrate from water gave crystals which were almost invariably twinned. 
The crystals and their twinning behaviour have been described by Barker 
(1911). Attempts to separate the twin individuals were not successful. The 
crystals have an almost perfect (mica like) cleavage plane. Cutting of the 
crystals gives rise to severe deformation which makes the crystals unsuitable 
for X-ray analysis experiments. The percentage of twinned crystals is much 
less when uronium nitrate is crystallized from methanol. Crystals obtained in 
this way have been used in the X-ray diffraction experiments. The habit of the 
crystals is prismatic, the zone axis being [100] or [010]. The cleavage plane 
is (001).

2.2 Determination of the unit cell

Rotation and Weissenberg photographs showed the unit cell to be mono
clinic. The unit cell parameters as determined on the single-crystal diffracto
meter are:

a: 9.535 (7) Ä 
b: £.198 (5) Ä 
c: 7.500 (6) A 
ß: 124.22 ± .05°

The unit cell dimensions found are in fair agreement with the values 
given by Lonsdale (1940). The systematic absences are hOl if l = 2n + 1 and 
OkO if k = 2n + 1. By these absences the space group is uniquely defined as 
the centrosymmetric space group P2i/c (no. 14, International Tables). Apart 
from the systematic absences the reflexions Okl with k  = 2n + 1 are extremely 
weak. With four molecules in the unit cell the calculated density is 1.68 g.cm‘3. 
The observed density is 1.69 g.cm"3 (Lonsdale, 1940).
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2.3 Measurement of intensities

A small crystal (maximum dimension 0.1 mm) was mounted in a Lin
demann capillary with the unique crystal axis parallel to the axis of the gonio
meter head. Intensities were measured on a Nonius automatic three circle 
diffractometer equipped with a scintillation counter and pulse height dis
criminator. The radiation used was Zr filtered Mo Ka radiation (X = .7093Ä). 
Intensities were determined using the 6—20 scanning technique. Background 
measurements were made during half the scanning time on both sides of the 
6 scanning region. The reflexions 400 and 004 were chosen as standard re
flexions. After every twenty reflexions one of the standard reflexions was 
measured. While measuring intensities no systematic trend in the intensities 
of the standard reflexions could be detected. The standard deviation in the 
intensities of the standard reflexions was approximately 1%. The differences 
in intensities of reflexions determined more than once were generally within 
the deviations predicted by counting statistics. All reflexions with 0 <  25° 
(sin 6/X <  .6) were measured at room temperature (21±1°C). The total num
ber of reflexions measurable in this range was 906, of which 253 had an in
tensity less than twice the standard deviation from counting statistics. The 
latter reflexions will be called unobserved reflexions in subsequent sections. 
As the number of unobserved reflexions rapidly increased with increasing 0, 
no intensity measurements were made at 6 >  25°. In view of the small dimen
sions of the crystal and the low value of the absorption coefficient (jur = .02) 
no correction for absorption was applied. Intensities have also been measured 
with Ni-filtered Cu Ka radiation. The number of reflexions measured was 628 
of which 26 were below the threshold value for an observed reflexion. These 
intensities have been used in the first stages of the structure determination.

2.4 Determination of the structure

The crystal structure of a compound is described by three positional 
parameters for each atom in the asymmetric unit. In addition to these positio
nal parameters in general six parameters are needed to give a description of the 
anisotropic thermal motion of the atoms in the asymmetric unit. These six 
parameters determine the magnitude and direction of the vibration ellipsoid 
which gives the root mean square displacement of the atoms in the different 
directions. In the case of isotropic thermal motion one thermal parameter is 
sufficient. A crystal structure is considered solved when the parameters, which 
can be determined by X-rays, are known.

In order to elucidate the crystal structure for a given compound crystal
lizing in a centrosymmetric space group one has to solve the sign problem 
(eq. 1.3). To attack this problem in the case of a structure consisting of atoms 
of nearly the same atomic number two methods are generally employed:



17

(1) Patterson method. It is possible to calculate from the absolute values of 
the X-ray structure factors a so-called Patterson function.

P(u) = 2  I P exp (27rih.u) (2.1)
h

According to the theory of X-ray diffraction (Stout and Jensen, 1968 , 
chapter II) the Patterson function is equal to the convolution:

P(u) = ƒ p(r)p(r+u)dr (2.2)

In practice this means that the Patterson function contains all interatomic 
vectors. The problem is the deconvolution of the Patterson function, 
which results in the position of the atoms.

(2) Direct methods. These methods which are based on statistical relations 
between the absolute values of the structure factors, are able to give the 
signs of the strongest reflexions. (Woolfson, 1961). With these strong 
reflexions a Fourier synthesis can be made from which positions of the 
atoms can be extracted.

A three dimensional Patterson synthesis was calculated. All peaks oc
curred at z/c = .0 and z/c = .5 indicating that uronium nitrate has a layered 
structure with layers parallel to the xy plane (layer spacing 3.10 Ä). From the 
fact that the Okl reflexions for k= 2n + 1 are very weak it can be concluded 
that the z/c coordinates of all atoms in the unit cell should be approximately 
.25 and .75.

The geometrical structure factor (International Tables for X-ray Crys
tallography, part I) for the Okl reflexions of the space P2!/c is:

A = cos [2jt(/z/c + (k +1) /4)] cos [27r(/ty/b ~ (k  + 0/4)] (2-3)

In the case that the z/c coordinates of all atoms are near .25 or .75 this ex- 
pression reduces to:

A = cos [7x(k + 2l)/2] cos [27t( ky/b - (k + 0/4)] (7-4)

When k  = 2n + 1 the expression (2.4) is zero.

It was assumed that the structure consisted of uronium and nitrate ions 
in the ‘facing’ arrangement, as found in N-methyluronium nitrate (Bryden, 
1957) and thiouronium nitrate (Feil and Song Loong, 1968). From sharpened 
Patterson syntheses (point atoms at rest) a number of orientations for the
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uronium nitrate froup was found. One of these trial structures gave rather good 
agreement with experiment using only low-order reflexions. In the meantime 
attempts to solve the structure by means of direct methods were made. The 
method applied manually to the hkO projection was the method of Zachariasen 
(1952) as described by Woolfson (1961). The result of this sign-determining 
procedure was that the signs of all strong reflexions except one agreed with 
the signs calculated from the model found by the Patterson method. 
Calculations up to this point were done using one atomic form factor (that of 
nitrogen) for all heavy atoms. The difficulty arising now was to distinguish 
the urea and nitrate groups, which have almost the same scattering power for 
X-rays. Assuming the facing arrangement of uronium and nitrate ions sugges
ted two possibilities, one of which gave a slightly better comparison with ex
periment. Ultimately the positions of the hydrogen atoms confirmed the cor
rectness of the structure chosen.

2.5 Refinement of the structure

The Cu data were refined first. The weight for each reflexion was taken 
to be w= 1/cj2, where o is the estimated standard deviation of the structure 
factor. The o was taken as o = 2S + .01IF0 I, where S is the standard deviation 
due to counting statistics and F0 is the observed structure factor. The func
tion minimized was w( IF0 I - s IFCI )2 where Fc is the calculated struc
ture factor and s is a scaling factor.

Refinement of the positions and isotropic temperature factors of the 
heavy atoms resulted in an R-factor of 15.4%.*A different Fourier synthesis 
made at this stage, clearly revealed hydrogen atoms. Next a few cycles of 
refinement were done with the temperature factors of the heavy atoms in 
anisotropic form. The R-factor dropped to 7.7%. A difference Fourier syn
thesis made after this refinement is shown in figure 2.1. The map gives the 
location of all five hydrogen atoms. The acidic proton is attached to the urea 
oxygen. Therefore the name uronium nitrate is the correct one for this sub
stance. Inclusion of the hydrogen atoms and some cycles of refinement gave a 
final R-value of 4.8%. Parameters refined were: positions and isotropic tem
perature factors of the hydrogen atoms, positions and anisotropic temperature 
factors of the heavy atoms.

*):
The R-factor is defined as 2  ( I F0 I — 1 Fc l )/ 2  I F0 I. Another measure of fit the so- 
called weighted R-factor which will be used, is given by R = ( 2 w (If 0 I - sIf cI)2 /
Sw If0\2)V\
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a '/* a

Difference Fourier synthesis (z/c = .25) showing the positions o f  the hydrogen 
atoms in uronium nitrate.

Next the Mo data were refined. The temperature and positional para
meters obtained from the refinement of the Cu-data were taken as starting 
point for the refinement. After a few cycles of refinement the R-factor was 
6.1% (Rw = 4.1%). During the refinement the very strong 001 reflexions were
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omitted, since they are expected to be affected by extinction. The R-factor 
using the observed reflexions only was 4.1% (Rw = 4.0%). The atomic scat
tering factors used in the refinement were those calculated from accurate 
atomic wave functions (Chapter V, tables 5.1, 5.2, and 5.3) except for the 
scattering factors of the hydrogen atom. The scattering factor for the last 
element was taken from Stewart, Davidson and Simpson (1965). In this scat
tering factor some effects of bonding are taken care of. The resulting positio
nal and atomic parameters are given in table 2.1 and 2.2 respectively. As is 
easily verified from the tables there is no significant difference between the 
results of the two different data sets (observed + unobserved reflexions, ob-

y/n
M ol Mo 2

y/b
M ol Mo 2

z/c
Mo 1 Mo2

c .1981(3) .1981(3) .4105(3) .4105(2) .2556(5) .2558(4)

N(l) .3112 .3112 .9170 .9171 .2542 .2542

N(2) .3334 .3334 .3766 .3767 .2605 .2605

N(3) .1010 .1010 .2963 .2963 .2537 .2537

0(1) .3521 .3521 .7724 .7723 .2493 .2493

0(2) .1871 .1871 .9459 .9460 .2602 .2602

0(3) .3969 .3969 .0297 .0297 .2516 .2517

0(4) .1497 .1497 .5614 .5613 .2483 .2484

H(l) .402 (4) .402 (4) .451 (4) .451 (4) .259 (6) .259 (5)

H(2) .372 .371 .266 .266 .278 .277

H(3) .134 .133 .177 .177 .246 .245

H(4) -.009 -.009 .324 .325 .243 .243

H(5) .234 .233 .649 .648 .258 .257

Table 2.1

Final positional parameters for uronium nitrate. The columns Mo 1 are the 
results o f  the refinement o f  observed reflexions. Parameters o f  the refinement 
with all reflexions are given in the columns marked Mo 2. The standard 
deviation given is applicable to all heavy or light atoms in one column.
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served reflexions only). Therefore the rest of the calculations was mainly per
formed with the observed reflexions, to give a saving in computer time. A 
list of observed and calculated structure factors is given in Appendix I.

From the correlation matrix produced by the full matrix least squares 
program a rather high correlation (.6) was found between the x and z coor
dinate of the same atom, due to the fact that the a and c axes are not perpen
dicular to each other.

Uu u 22 U33 Ui2 U13 u 23

Mo 1 Mo 2 Mo 1 Mo 2 , Mo 1 Mo 2 Mo 1 Mo 2 Mo 1 Mo 2 Mo 1 Mo 2

c .034 (1) .035 (1) .021 (1) .021 (1) ,037 (2) .037 (2) .000 (1) .000 (1) .021 (2) .021 (1) .002 ( o .002 (1)

N(l) .039 .039 .023 .023 .052 .052 .003 .002 .029 .029 .001 .001

N(2) .039 .039 .027 .027 .065 .065 -.001 r-H

Oq

.037 .037 .001 .000

N(3) .039 .039 .022 .022 .066 .066 -.003 -.002 .035 .035 .001 .001

0(1) .058 .058 .016 .016 .094 .093 .004 .004 .054 .054 .001 .001

0(2) .049 .049 .031 .031 .102 .102 .002 .001 .058 .058 .000 .000

0(3) .048 .048 .021 .021 .076 .076 -.005 -.005 .044 .044 .001 .001

0(4) .045 .045 .018 .018 .072 .072 .004 .004 .039 .038 .002 .002

H(l) 4.9 (10) 5.2 (8)

Table 2.2

Vibration parameters. The temperature factor for the heavy atoms was 
exp — 27T2(h2a*2U12 + 2hka*b*Ui2 + . . . ). The temperature factor for the 
hydrogen atoms was exp —(B sin2 <9/X2). The meaningof thedifferent columns 
is given in table 2.1.

H(2) 4.4 4.3

H(3) 7.2 7.0

H(4) 5.2 5.3

H(5) 8.6 8.3
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Figure 2.2
One layer o f  the uronium nitrate structure (z/c = .25) giving the positions and 
thermal vibration ellipsoids o f the different atoms. The vibration ellipsoids are 
scaled to include 50% probability. Hydrogen bonds are denoted by a thin line.

2.6 Description of the structure

The structure of uronium nitrate as determined by X-ray diffraction is 
shown in figure 2.2. The figure, which gives a layer of the structure, clearly 
reveals the fact that in the crystal a two dimensional hydrogen bonding net
work is present. This two dimensional network explains the presence of the 
perfect cleavage plane. The bonding between different layers is mostly due to
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the relatively weak van der Waals forces.
The structure may be considered built from units of uronium nitrate 

ions in the facing arrangement. These units concatenated to an infinite 
chain by rather short 0(4) — H (5 ) ..................0(1) bonds. Bonding be
tween different chains in the same plane (which are related to each 
other by means of a screw axis) is effected by hydrogen bonding in which 
the remaining two hydrogen atoms of the uronium nitrate ions are involved. 
All hydrogen atoms in the structure are part of a hydrogen bond. The X—H ... Y 
bonds found are nearly straight and the hydrogen atoms are directed towards 
the regions in which the lone pair electrons of the hydrogen bond accepting 
atoms are located. The last two facts are conditions for getting a stable hydrogen 
bond. Bond distances and angles found in urea nitrate are given in table 2.3 
and table 2.4 respectively. The uronium and nitrate ions are nearly planar. 
The distances of the atoms to the best planes fitted to the positions of the 
heavy atoms are given in table 2.5.

N (l)—0(1 ) 1.256(4) N (2)-H (l) .90(5) N(2) . .  0 (3 ) 2.919(5)

N ( l) -0 (2 ) 1.233 N (2)-H (2) .96 N(2) . .  0 (3 ') 2.907

N (l) -0 (3 ) 1.242 N (3)-H (3) 1.03 N(3) . .  0 (2 ') 2.981

C -N (2 ) 1.301 N (3)-H (4) 1.04 N(3) . .0 (2 " ) 2.954

C -N (3 ) 1.312 0 (4 )—H(5) 1.04 0(1 ) . . 0 (4 ) 2.588

C - 0 ( 4 ) 1.311

o
Table 2.3: Bond distances (A) in uronium nitrate.

0(1) —N (l) -0 ( 2 ) 120.2(3)1 C -N (2) —H (l) 125(4)

0 (1 ) —N (l) -0 ( 3 ) 119.0 C -N (2) —H(2) 120

0(2) —N (l) -0 ( 3 ) 120.8 c —N(3) —H(3) 116

0(4) -C —N(2) 121.5 c -N (3) —H(4) 121

0 (4 ) -C —N(3) 116.3 C V -0 ( 4 ) —H(5) 114

N(2) - c -N (3) 122.2 H (l) -N (2) —H(2) 115(6)

H(3) -N (3) —H(4) 122

o
Table 2.4: Bond angles ( ).



24

nitrate ion uronium ion

N(l) .004 c .006 H(l) -.03

0(1) -.001 N(2) -.002 H(2) .10

0(2) -.001 N(3) -.002 H(3) -.06

0(3) -.001 0(4) -.002 H(4) -.02

H(5) .04

Table 2.5.
O

Distances (A) o f the atoms to the best planes fitted to the positions o f  the 
heavy atoms o f  the uronium and the nitrate ions.

All bond angles found in the structure are close to 120° as may be 
expected for planar structures in which the carbon and nitrogen atoms are 
sp2 hybridised. A significant difference in the two N—C—O angles of the 
uronium ion is found. A similar distortion is also found in thiouronium 
nitrate (Feil and Song Loong, 1968) and N—methyluronium nitrate (Selman 
and Harkema, 1971). In urea—oxalic acid which consists of strongly hydrogen 
bonded urea and oxalic acid molecules the distortion is much less pronounced 
(Harkema, Bats, Weyenberg, and Feil, 1971). The differences in bond angles 
are therefore caused by the protonation of the urea molecule.

Considering bond lengths, it is found that the C—O and C—N distances 
are significantly different from the ones found in urea: C—O: 1.243(6),’ 
C—N: 1.351(7) (Worsham, Levy and Peterson, 1957). A simple explanation 
of these facts may be given by the following arguments based on valence bond 
theory. The principal resonance structures of the urea molecule are given in 
figure 2.3. Structure I is the predominant one, while structures II and III 
(which have equal weights) occur to a lesser extent.

o -o o -

H H\ + ^ C
r

H II

H

H III H

Figure 2.3

Three principal resonance structures for the urea molecule.
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Protonation of urea (at the oxygen atom) will stabilize the structures II and 
III and give rise to a shortening of the C—N bond and a lengthening of the 
C—0 bond as found experimentally.

In the nitrate ion one of the N—0  distances is significantly longer than 
the other two. When a correction for thermal motion" (Cruickshank, 1961) 
is made, it is found that the differences described still exist and that their 
order of magnitude is not altered. The longer bond length can be explained 
by the strong hydrogen bond in which 0(1) is involved. A detailed discussion 
of the geometric details will be given in Chapter IV by means of quantum- 
chemical calculations.

Thermal parameters have been transformed to a system with three per
pendicular axes: the crystallographic a, b, and c* axes. The third axis is per
pendicular ,to the planes in which the molecules are contained. The principal 
axes of the thermal ellipsoids have been determined. The root mean square 
displacement (<U2> ^ , where U is the displacement of an atom in the direc
tion under consideration) along the principal axes are given in table 2.6 (see 
page 26). The table also contains the direction cosines of the angles between 
the principal axes of the thermal ellipsoids and the three perpendicular unit 
vectors. From the values for the root mean square displacements and the direc
tion cosines given in the table it can easily be verified that the largest thermal 
motion is found perpendicular to the plane containing the molecules. This 
behaviour can be explained by the fact that bonding forces within the molecu
lar plane are much stronger than between the layers of molecules. The projec
tions of the principal axes of the thermal ellipsoids of the different atoms are 
also shown in figure 2.2.

2.7 Computer programs used

During the work described in this chapter the following computer 
programs have been used.

NONA This program (Song Loong, 1967) calculates the setting angles 
for the automatic diffractometer. The values of the different 
angles are written on a disc and used in the following program.

NIT prepares the input tape for the diffractometer (Harkema, 1968).

* Drs. A.F.J. Ruysink (Laboratorium voor Struktuurchemie, Groningen) kindly per
formed the calculations of the thermal motion correction.
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NOT This program (Harkema, 1968) is used to process the output tape 
of the diffractometer. Intensities and their standard deviations 
are calculated. Reflexions are divided into observed, nonsig
nificant and standard reflexions. The intensities of the observed 
reflexions are punched on cards.

LPST (Song Loong, 1967). Program to calculate structure factors and 
their standard deviation from intensities. The sorting of the struc
ture factors necessary for making Fourier and Patterson maps is 
also done by this program. Calculated structure factors are written 
on disc.

FDP (Song Loong, 1967). A program for computing Fourier, dif
ference Fourier and Patterson sections.

MFLS A local version of the ORFLS program (Busing, Martin, and Levy, 
1962). This program is used in the least-squares refinements of 
positional and thermal parameters.

ORTEP (Johnson, 1956). Program for preparing (stereoscopic) drawings of 
crystal structures. The program can also be used to calculate bond 
angles and distances.
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CHAPTER III

COMPARISON OF X -R A Y  AND NEUTRON STRUCTURE 
DETERMINATION OF URONIUM NITRATE

3.1. The neutron determination

After the work described in the preceding chapter was completed a paper 
(Worsham and Busing, 1969) giving the structure determination of uronium 
nitrate by means of neutron diffraction was announced*. In this chapter a 
comparison of the two structure determinations by different methods will be

X-ray and neutron diffraction, although they are very similar to each 
other, have a different basis. In X-ray diffraction electromagnetic radiation 
is scattered by the electrons. Therefore X-ray diffraction gives information 
on electron density. Thermal neutrons (X~1Ä) however, are scattered by the 
nuclei of the atoms (interaction by nuclear forces). Exceptions are magnetic 
materials. In this case there may be an appreciable interaction between elec
trons and neutrons. Generally speaking neutron diffraction produces results 
as to positions and thermal parameters of the atomic nuclei.

The scattering power of atoms (atomic form factor) for X-rays decreases 
rapidly with increasing sin0/X. The scattering power is, at small values of 
sin0/X, roughly proportional to the number of electrons in the atom. For 
this reason parameters of light atoms in structures containing heavy atoms can 
not be determined with high accuracy by means of X-ray diffraction. The 
scattering powers of atoms of neighbouring elements in the periodic system 
are very similar. In contrast to this the scattering power of atoms for neutrons 
is constant for all values of sin0/X, owing to the fact that the dimension of the 
atomic nucleus is small compared with the wavelength normally used in neutron 
diffraction experiments.

The behaviour of the scattering power as a function of the constitution

* We thank Dr. Worsham and Dr. Busing for sending a prepint of their paper and the rea
dy access they gave to their data. **

** We also learned that a second X-ray diffraction experiment on uronium nitrate has 
been carried out (White and Mason, 1968). The results o f this work are very similar 
to the results given in chapter II.
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of the nucleus is rather erratic. Elements which are neighbours in the periodic 
system (or even different isotopes of the same atom) can have very different 
scattering power. There is no systematic trend of the scattering power with 
increasing atomic number.

Some advantages of neutron over X-ray diffraction, which are connected 
with these properties are:

(1) Parameters of heavy and light atoms (especially hydrogen) can be deter
mined with almost the same accuracy.

(2) Generally more reflexions can be determined with neutrons, due to the 
scattering power for neutrons, which is a constant for all values of sin#/A.

(3) Atoms with nearly the same number of electrons can sometimes be dis
tinguished easily (for instance transition metal ions).

The greatest disadvantage of neutron diffraction is the fact that the intense 
neutron beam required can only be provided by a high flux nuclear reactor.

The neutron diffraction experiments on uronium nitrate were carried 
out by Worsham and Busing (1969) on the Oak Ridge automatic neutron dif
fractometer. Reflexions were measured at room temperature (22°C). The in
tensities were corrected for absorption (jur—.5 ). The number of reflexions mea
sured was 1774, of which 1311 were classified as observed. The final R-factor 
after refinement of positional and thermal parameters in anisotropic form was 
5.5%. This figure was obtained by refinement of observed reflexions only. To 
minimize extinction effects the 35 strongest reflexions were omitted from the 
last cycles of refinement. The least squares refinement was carried out so as 
to minimise X w lFQ2 -Fc2 I2, in which w is a weighting function and Fq and Fc 
are observed and calculated structure factors.

3.2 Reasons for differences between X-ray and neutron parameters.

When positional and thermal parameters obtained by X-ray and neutron 
diffraction are compared, systematic differences are frequently found. (Cop
pens and Vos, 1971; Coppens, Sabine, Delaplane and Ibers, 1969).

Hamilton (1969) has given a review on the significance of the differen
ces found. According to his results some of the differences in parameters are 
significant. The differences are related to failures of the scattering model nor
mally used in X-ray diffraction (spherical atoms in their ground state). The main 
points in which the ‘classical’ X-ray scattering model may be in error have been 
summarized by Coppens (1969). The changes in the electron density of free 
atoms which occur upon chemical bonding may be described by the following 
mechanisms, some of which are related to each other.
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(1) The formation o f an overlap density.
When atoms form a molecule electrons are normally transferred into 
the regions between the two atoms. This can be shown by the simplest 
molecular orbital treatment of the smallest molecule: the hydrogen mole
cule ion. (Eyring, Walter and Kimball, 1944; chapter 11). The same trend 
may be found in accurate calculations on more complex molecules. (Ran- 
sil and Sinai, 1967). This increase in density is due to the overlap of wave- 
functions. Therefore it is called overlap density. Owing to its diffuse cha
racter the scattering of overlap densities becomes negligibly small beyond 
sin0/A = .5. (section 5.4, figures 5.3 and 5.4).

(2) The formation o f prepared valence states.
Quantumchemical calculation of the M.O.-L.C.A.O.type can be made 
easier by taking as a basis set the so called hybridised atomic wave 
functions instead of the ‘normal’ s and p orbitals (Eyring, Walter and 
Kimball, 1944, chapter 12). The hybrids on an atom may contain one 
or two electrons. In the latter case the orbital does not participate in 
the bonding and the electrons of the orbital are called lone pair electrons. 
The necessary hybridisation is obtained by promotion of a 2s electron 
to a 2p atomic orbital.

(3) Charge migration (ionicity)
Due to the formation of a molecule migration of charge from one atom 
to others (or from one orbital to another) may take place. The resulting 
net charges on the atoms may be several electronic charges (ionic com
pounds) or fractions of the electronic charge (covalent compounds).

(4) Orbital contraction or expansion.
The scattering model for X-ray is based on atomic wave functions cal
culated for isolated atoms in their ground state. Model calculations (Hehre, 
Stewart and Pople, 1969) show that better results in calculations on mo
lecular systems can be obtained by allowing a contraction or expansion 
of the atomic orbitals used.

The four mechanisms described have as a consequence that parameters obtained 
by X-ray diffraction maybe in error. The effect of the redistribution of valence 
electrons can be compensated by an ‘adjustment’ of position as well as thermal 
parameters. The greater part of the effect one wishes to determine is ‘refined’ 
away in the course of normal X-ray diffraction calculations. A clear illustration 
of this effect is given by Coppens, Sabine, Delaplane and Ibers (1969) in their 
work on oxalic acid dihydrate. Two Fourier synthesis maps, showing the dif
ference between the observed and calculated electron density, are given. One 
map, made after completion of the normal X-ray refinement, hardly contains 
any significant information on bonding electron density. The other map, giving 
the difference in electron density between the observed structure and a model 
based on the neutron positional and thermal parameters, clearly shows signi-
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fïcant effects attributable to a redistribution of valence electron density. It is 
evident that there is a strong correlation between the effects one wishes to de
termine (the redistribution of valence electrons) and thermal and positional 
parameters of the atoms as determined by X-ray diffraction.

Therefore a determination of electron redistribution from X-ray data 
can be made only when sufficient data have been collected in that part of reci
procal space where the influence of valence electron scattering is small: i.e. at 
high values of sin0/A. Another way is of course the determination of parameters 
by means of a method which is not influenced by the redistribution of valence 
electrons, for instance neutron diffraction.

The effects of the different mechanisms described above on thermal and 
positional parameters will be considered separately.

The presence of the overlap density will move the centroid of the charge 
cloud (the position determined by X-ray diffraction) towards the midpoint 
of the bond. In a model calculation for the hydrogen molecule Stewart, David
son and Simpson (1965) found that the position of the atom determined by 
X-ray diffraction, compared with the position of the atomic nucleus, may be 
shifted towards the bonding region by an amount of .1Ä. The shifts expec
ted for heavy atoms are smaller due to the presence of the core electrons, 
which are unaffected by chemical bonding.

Lone pair electrons give rise to a migration of the centroid of the charge 
cloud in the direction of the lone pair orbital. In an order of magnitude calcu- 
lationCoppens andCoulson(1967)give a computation of the maximum shift ex
pected for the X-ray parameter of a terminal oxygen atom in a nitro group. They 
find that the expected shift due to the lone pair electrons is .04Ä in a direction 
away from the bonding region. The shift due to the overlap density of o and it 
electrons is calculated as .02Ä in a direction opposite to the shift caused by the 
lone pair electrons. The net shift is .02Ä away from the bonding region. 
The shifts found in a combined X-ray and neutron diffraction experiment will 
be smaller than the value of .02Ä owing to the fact that the position determi
ned by X-ray diffraction is a weighted mean of the electron density distribu
tion. The weighting function depends on the ratio of the scattering powers 
due to valence and core electrons. This ratio in turn is a function of sin 6/X. 
The shifts actually found, summarized by Coppens et al (1969), are of the or
der of .005Ä in the directions predicted by Coppens and Coulson (1967).

As the effect of overlap density is to remove electron density from the 
centre of the atom, one can expect that temperature factors determined by 
X-ray analysis are greater than the corresponding ones resulting from neutron 
diffraction.

The errors in X-ray parameters introduced by lonicity and Orbital Con
traction will mainly affect thermal parameters. The effect of orbital contraction 
is demonstrated by Stewart, Davidson and Simpson (1965). They found that, 
when one tries to describe the electron density in the hydrogen molecule as a
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sum of spherical densities, the best fit is obtained when one uses a spherical 
density which is contracted compared with the electron density in the hydrogen 
atom.

Summarizing experimental and theoretical evidence on errors introduced 
by the use of spherical scattering factors of the atoms in the ground state in 
X-ray crystallographic structure determinations, the following conclusion can 
be drawn. As far as position parameters of heavy atoms are concerned no gross 
errors are expected, due to the fact that the scattering of the valence electrons 
is small compared with the total scattering of the atom. For second row atoms 
the errors expected are also small. This is caused by the fact that the possible 
shifts due the overlap densities in the different bonds to one atom or due to 
overlap densities and the lone pair electrons cancel each other to a great extent. 
The shifts of the hydrogen atoms are expected to be in the direction of the mid
point of the bond due to the fact that the shift caused by the bonding elec
trons cannot compensated by lone pair electrons.

Due to the deformation of the electron density upon the formation of a 
molecule temperature factors determined by X-ray diffraction are significantly 
greater than the ones determined by neutron diffraction (Hamilton, 1969). 
The overall difference is of the order of magnitude of 10 - 20% at room tem- 
parature. In certain directions, however, the differences may be greater (Cop
pens et al. 1969). The directions of the maximum deviation are closely related 
to the directions in which large deviations from spherical symmetry are expec
ted.

It should be pointed out that all conclusions in this field have been drawn 
mainly on qualitative arguments. A model calculation on a compoud, of which 
the electronic structure is known with great accuracy, can be very helpful in 
understanding how different X-ray parameters are affected by electron redis
tribution due to chemical bonding. Such a calculation can also give information 
on the question to which extent the reflexions in different parts of reciprocal 
space are influenced by valence electron scattering.

3.3 Comparison of results.

The crystal structure of uronium nitrate as found by X-ray diffraction 
(chapter II) is the same as the one determined by neutron diffraction. As far 
as chemical features (bond lengths and angles, the position of the acidic proton) 
are concerned no appreciable differences are expected. This is confirmed by 
table 3.3, which gives bond distances determined by X-ray and neutron dif
fraction.

A detailed examination of the results however shows a number of minor 
differences which can be explained by effects due to chemical bonding in the 
X-ray results. Errors of this kind have been described in the preceding section.



x/a y/b z/c

Mo 1 Mo 2 N Mo 1 Mo 2 N Mo 1 Mo 2 N

c .1981(3) .1977(2) .1976(1) .4105(2) .4105(2) .4111(1) .2558(4) ___ .2548(2)

N(l) .3112 .3111 .3113 .9171 .9170 .9167 .2542 — .2541

N(2) .3334 .3337 .3345 .3767 .3768 .3767 .2605 — .2612

N(3) .1010 .1011 .1013 .2963 .2963 .2960 .2537 _ .2542

0(1) .3521 .3523 .3525 .7723 .7723 .7727 .2493 — .2500

0(2) .1871 .1874 .1883 .9460 .9460 .9460 .2602 — .2608

0(3) .3969 .3967 .3964 .0297 .0297 .0292 .2517 — .2513

0(4) .1497 .1499 .1501 .5613 .5613 .5605 .2484 _ .2489

H(l) .402(4) .402(3) .4077(4) .451(4) .452(3) .4624(3) .259(5) _ .2565(6)

H(2) .371 .368 .3668 .266 .266 .2548 .277 — .2654

H(3) .133 .138 .1299 .177 .177 .2766 .245 — .2563

H(4) -.009 -.007 -.0024 .325 .325 .3276 .243 — .2483

H(5) .233 .230 .2286 .648 .650 .6439 .257 - .2515

Table 3.1

Position parameters for uronium nitrate obtained by X-ray and neutron diffraction. The values 
given in the different columns are: Mo 1 - X-ray parameters based on the refinement o f all data, Mo 2 - X-ray 
parameters based on the refinement in which z/c parameters were fixed at the neutron values, N  - Neutron pa
rameters.
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Position parameters determined by the two methods are given in table 
3.1. Differences in these parameters (X-ray-neutron values) have been collec
ted in table 3.2. As described in section 2.5 a rather strong correlation was found 
between the x and z coordinates of the atoms. This correlation can be seen in 
table 3.2. Differences in these two coordinates for the heavy atoms are nearly 
always in the same direction. The summation of AxAz/(ac) over all heavy 
atoms gives a value of 281 x 10"8> whereas the corresponding products 
AxAy/(ab) and AyAz/(bc) give a value of —34 x 10'8 and -63  x 10’8 
respectively.

A x/a Ay/b A z/c

Mo 1 Mo 2 M ol Mo 2 Mo 1 Mo 2

c 5(3) 1(3) -6(3) -6(2) 10(4) —

N(l) - 1 - 2 4 3 1 —

N(2) -11 - 8 0 1 - 7 —

N(3) - 3 - 2 3 3 - 5 —

0(1) - 4 - 2 - 4 - 4 - 7 —

0(2) -12 - 9 0 0 - 6 —

0(3) 5 3 5 5 4 —

0(4) - 4 - 2 8 8 - 5 —

H(l) -60(40) -60(40) - 90(40) -100(40) 20(50) —

H(2) 40 10 110 110 120 —

H(3) 30 80 0 0 -110 _

H(4) -70 -50 - 30 - 30 - 50 _

H(5) 40 10 40 60 50 —

Table 3.2.
Differences in positional parameters (X-ray values-neutron values) multiplied 
by 104. The meaning o f  the different columns is as in table 3.1.
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To eliminate this correlation problem a refinement was made in which 
the z/c parameters of all atoms were fixed at the neutron values, which are 
more accurate. Parameters resulting from this refinement are also given in 
tables 3.1 and 3.2. The resulting R-factors (R=6.2.%, Rw=4.2%) are nearly 
as good as the factors found after refinement of all parameters (R = 6.1%; 
Rw =4.1.%).
As seen from table 3.2 the resulting x/a parameters are in better agreement 
with neutron parameters than the corresponding values after refinement of all 
parameters. (The sum of the squares of the differences decreased from 357 x 
10"8 to 171 x 10“8). Differences found for the heavy atoms are displayed in 
figure 3.1. Although the magnitude of many of the shifts found is not sig
nificant, the direction of most shifts is in a direction which can be predicted 
from a redistribution of valence electrons. As a result of the differences bond 
lengths derived by X-ray diffraction shows systematic deviations from the 
neutron values.

Table 3.3 (in which bond lengths are compared) gives as a trend that 
all bond lengths concerning an oxygen atom are longer when determined by 
X-ray diffraction. This deviation is due to the presence of lone pair electrons. 
The two C—N bonds are shorter than the corresponding neutron values due 
to the fact that the influence of overlap density in the C—N bond is stronger 
than the overlap densities in the N—H bonds. The difference in the two C—N 
distances which is quite appreciable in the X-ray experiment, is seen to be

Differences between X-ray and neutron position parameters for the heavy 
atoms in uronium nitrate. The regions o f the lone pair electrons are also in
dicated in this figure.
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X N X N

N(l)-0(1) 1.256(4) 1.250(1) N(2)-H(l) .90(5) 1.005(3)

N( 1)0(2) 1.233 1.227 N(2)-H(2) .96 1.013

N(l)-0(3) 1.242 1.236 N(3)-H(3) 1.03 1.014

C -N(2) 1.301 1.312 N(3)-H(4) 1.04 1.000

C -N(3) 1.312 1.315 0(4)-H(5) 1.04 1.006

C -0(4) 1.311 1.298

Table 3.3

Bond lengths in Ä as determined by X-ray and neutron diffraction. Columns 
marked X: X-ray results; N: Neutron results.

very small from the (more accurate) neutron results. It is interesting to note 
that White and Mason (1968) found the same inequivalence in C—N bond 
lengths by means of X-ray diffraction. The conclusions on differences in bond 
lengths, when comparing X-ray and neutron diffraction results, are fully sup
ported by their work.

Contrary to what is generally found, not all bond lengths involving 
hydrogen determined by X-ray diffraction are shorter than the corresponding 
neutron values. Part of this may be due to correlation effects between para
meters of heavy atoms and hydrogen atoms. This is supported by the fact that 
when a refinement is made on position and thermal parameters of the hydrogen 
atoms (the parameters of the heavy atoms being fixed at the neutron values) 
all bonds to hydrogen atoms except one are shorter than the corresponding 
neutron values.

Considering thermal parameters, which are given in table 3.4, it is found 
that for the heavy atoms the X-ray values are nearly always greater than the 
neutron values. The differences in thermal parameters, which may be quite 
appreciable, are collected in table 3.5, which gives the differences in 
parameters. These parameters are related to the mean square displacements 
along the reciprocal axes. The mean difference between X-ray and neutron 
values is of the order of magnitude of two standard deviations. Differences 
of this magnitude are commonly found when comparing X-ray and neutron 
values for thermal parameters. The fact that differences in specific directions



U,! u 22 U33 U i2 U,3 u 23

X N X N X N X N X N X N

c 346(16) 291(6) 206(14) 181(4) 371(21) 409(6) - 3(13) 13(3) 208(16) 227(5) 24(13) 18(4)

N(l) 385(14) 313(3) 226(12) 174(4) 521(21) 468(4) 26(12) 3(3) 294(15) 262(2) 8( 12) 8(3)

N(2) 388(15) 363(3) 273(15) 238(4) 654(22) 597(6) - 9(13) 13(3) 370(16) 344(5) 5(14) 0(3)

N(3) 391(15) 366(3) 223(13) 211(4) 662(21) 629(6) - 28(12) -10(3) 349(16) 338(5) 10(14) 36(3)

0 ( 1) 580(14) 501(6) 157(10) 164(6) 938(20) 857(12) 37(10) 23(7) 541(15) 502(10) 11(12) 18(5)

0 (2) 488(14) 488(6) 305(13) 259(6) 1019(24) 1077(16) 15(11) - 7(7) 578(16) 574(10) 3(13) - 10(8)

0(3) 475(13) 404(6) 205(10) 211(4) 761(19) 714(10) -46(10) - 13(3) 442(14) 401(7) 6(11) 5(5)

0(4) 447(13) 398(6) 182(10) 181(4) 723(18) 670(10) 42(9) 29(3) 385(13) 391(7) 20( 11) 23(5)

Table 3.4.

Vibration parameters (multiplied by 10* ) determined by X-ray and neutron diffraction. The temperature factor expression used is given in table 2.2.
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A U „ a u 22 a u 33

c 54(15) 27(12) -38(21)

N (l) 72 52 53

N(2) 23 35 57

N(3) 24 12 33

0 (1 ) 79 - 7 81

0(2 ) 0 46 -56

0 (3 ) 71 - 6 47

0(4 ) 49 1 53

Table 3.5

Differences in the U(i thermal parameters (multiplied by 104). The number 
given is the X-ray value minus the neutron value.

may be influenced by bonding effects can be demonstrated by considering 
the thermal parameters for the oxygen atoms in the xy  plane. It is found that 
the maximum differences are found in the directions which are related to the 
positions of the lone pair electrons. For instance the lone pair electrons of 
0(2) are contained in two regions on opposite sides of the x-axis. The electron 
density in these regions has been compensated by an increase in the U22 X-ray 
thermal parameters.

To get an impression what errors are compensated in the course of X-ray 
refinement, a difference Fourier synthesis map was calculated using structure 
factors based on X-ray experiments and positional and thermal parameters 
derived from neutron diffraction. The R-factor in this case (R = 5.7 %) is great
er than found after ‘conventional’ X-ray refinement (R = 4.1 %). The dif
ference Fourier synthesis is shown in figure 3.2 together with the final X-ray 
difference map. As can be seen from the map the biggest differences in the 
map are in the regions in which the electron density is strongly affected by che
mical bonding. In the uronium ion for instance a positive electron density is 
found in all the bonds. Furthermore an excess electron density is found near 0(4)
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4a

Figure 3.2

Difference Fourier synthesis maps (z/c -  .25) 
left: Final X-ray map. Interval between two contour lines .02 e Ä '3. 
right: Combined X-ray and neutron map. Interval: .05 e Ä~3.
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in the region in which the lone pair electrons are expected. The most important 
feature in the neighbourhood of the nitrate ion is the presence of electron den
sity due to the lone pair electrons of the oxygen atoms. Many of these features 
have disappeared in the final X-ray difference map, the one based on ‘accom
modated’ parameters.

Reviewing this chapter it can be concluded that most of the differences 
between X-ray and neutron parameters found in uronium nitrate are due to 
failures in the scattering model commonly used in X-ray diffraction.
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CHAPTER IV

SEMI-EMPERICAL QUANTUMCHEMICAL CALCULATIONS 

ON URONIUM NITRATE

4.1 Introduction

This chapter describes semi-empirical calculations on the uronium nitrate 
molecule. These calculations were carried out by C.N.D.O./2 method. (Pople 
and Segal, 1966). A brief description of the method employed and the results 
of a number of calculations will be given.

The problem with which one is confronted in energy calculations on 
atomic or molecular systems is to find an (approximate) solution of the eigen
value equation:

Hi// = E\jj (4.1)

in which H is the Hamiltonian operator of the system under consideration and 
ip is the molecular wave function which depends on the coordinates of all elec
trons and nuclei'. Within the Born-Oppenheimer approximation the Hamiltonian 
(in atomic units) for the electrons is given by:

H = 2 H ( a ) + S .
OL N OL,ß

1
roß

ß(a (4.2)

The summations extend over all electrons. The l/raß term of equation (4.2) 
represents the electronic repulsion. The Hamilton operator for electron a in 
ie field of all nuclei’ is given by:

(4-3)
a raa

The term -  is ihe kinetic energy operator. The last termin(4.3) is the
interaction between electron a and the nucleus a with charge Za. The summa
tion a is over all nuclei'. An exact solution of equation (4.1) as far as mole
cules are concerned has only been given for the simplest molecule: the hydro
gen molecule ion. In all other cases we have to content ourselves with appro
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ximate solutions. It is possible to express any exact or approximate solution 
of equation (4.1) as a linear combination of so called Slater determinants. The 
Slater determinants are constructed from a complete set of one electron spin 
orbitals. State functions written in this form have the property of being anti
symmetric with respect to interchanging of electrons.

The approximation scheme commonly adopted in atomic and molecular 
calculations in the so-called Hartree - Fock or Self Consistent Field method. 
The outlines of calculations in the molecualr field (closed shell) have been gi
ven by Roothaan (1951). In this method one determines the best wave func
tion (with regard to the energy) which can be written as a single Slater deter
minant. In determining this wave function one makes use of the variation prin
ciple which states that any approximate solution of eq. (4.1) for the ground- 
state of the system has a higher energy than the exact solution. The orthonor
mal one electron Molecular Orbitals 4>j which compose the Slater determinant 
are given as a Linear Combination of Atomic Orbitals Xv (L.C.A.O. - M.O. me
thod).

^i ^  cvi *v (4.4)

The summation v is over all atomic orbitals in the basis set (the set of orbitals 
from which the M.O. is constructed). The coefficients are treated as vari
ational parameters determined by the condition that the energy of the ground 
state is a minimum. This requirement leads to the so-called Roothaan equations 
written in matrix form:

F C = S C E (4.5)

In this equation F and S are known matrices defined below. The matrix C con
tains the coefficients of the orbitals given in equation (4.4). The matrix E is 
a diagonal matrix giving the energy of the M.O.’s.

The elements of the matrices F and S are given by the following equations:

F l i v  “ + G \xv

^ i v  ( 1) ^r i

(Hn (1) has been defined in (4.3))

GUlv=?  FXo KmHAor) -VifaoWX)] (4.8)^  A, O
(pv\Xa) =J X*(l) X„(1) — —  xj(2) Xa(2) d r ,d r2

1 2

(4.6)

(4.7)

(4.9)
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V = J xM(1)X^ (1)dTl (4-10)

PXa= 2 S cXicai (4 ' H )

In these equations is the matrix element of the Hamiltonian, giving 
the energy of an electron in the field of all nuclei. The matrix elements G^p 
represent the electronic interactions. These matrix elements are dependent on 
the population matrix elements ? \0 and therefore on the elements of the C 
matrix. The summation in (4.11) is over all occupied M.O.’s. (In a closed shell 
ground state the lowest M.O.’s are occupied by two electrons with opposite 
spins).

In actual calculations the following scheme is followed. Make a first guess 
for the C matrix, compute F (eq. (4.6), (4.7) and (4.8)) and then solve eq. 
(4.5). In this way a new C matrix is obtained which can be used to construct 
a new F matrix. This procedure is repeated a number of times until self-con
sistency is reached.

4.2 The C.N.D.O./2 method.

The number of molecules for which calculations following the S.C.F. 
method have been performed is rather limited. This limitation is due to the fact 
that calculations along these lines are very time-consuming. The step which 
takes most of the computer time is the calculation of the matrix elements of 
eq. (4.9) owing to their very large number and the complexity of the calcula
tions of some elements. In a recent calculation (Clementi, Mehl and von Nies- 
sen, 1971) on one of the largest molecular systems treated in this way, the num
ber of electronic repulsion integrals in the first S.C.F. cycle was 2.4 x 109. The 
molecule consisted of 29 atoms and contained 136 electrons. The integral 
calculation took 48 hours on one of the most powerful computer systems 
available today.

In order to simplify S.C.F. calculations various approximation schemes 
have been developed. In these methods a number of integrals is neglected or 
approximated by empirical values. A review of these semi-empirical ap
proximation schemes has been given recently by Klopman and O’Leary (1970). 
In our calculations the C.N.D.O./2 method as developed by Pople, Santry and 
Segal (1965a, 1965^, 1966) was used. A short description of the assumptions 
made in this method will be given below.
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(1) The first approximation made is the so-called Zero Differential Overlap 
approximation:

V ^ M 1) = 0 for <4*12)

By this approximation the number of integrals to be calculated is redu
ced drastically because all integrals in eq. (4.9) which apply to 3 or 4 dif
ferent centers are neglected. The two center integrals retained in the cal
culations are of the type:

yßv = (m  I w )  (4.13)

All other two center integrals are neglected. The Z.D.O. approximation 
maybe partially justified by assuming that the basis orbitals are so-called 
Löwdin orbitals (Parr, 1964).

(2) In order to retain invariancy under a rotation of axes, additional ap
proximations have to be made to the jß V integrals. Invariancy is ob
tained by requiring that the integrals jß V depend only on the atoms to 
which Xju and Xv belong and not on the type of orbitals (s,p) under con
sideration.

(3) Approximations similar to assumption (1) and (2) have also to be made 
to the Hfjp matrix elements (eq. (4.7)).

In this way the following expressions for the elements have been 
obtained (Pople and Segal, 1966)

+ -  0’b b - Zb)T* (4.14)
b^a

^IIP “ ^  + U.V ~  ^ jU ^ab ^

In these equations Iß and Aß are the ionisation potential and electron affinity 
of the atomic orbital ju (which belongs to atom a). The terms Paa and Pßß 
represent the number of electrons on atom a and in molecular orbital jjl res
pectively. In equation 4.15 the terms j3a and are empirical constants which 
depend on the type of atom (a,b) to which the atomic orbitals v and ju belong. 
Sßp is an element of the overlap matrix (eq. (4.10)), which is not neglected
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here as might be expected from the Z.D.O. approximation. The values of Iß + 
Aß are derived from atomic spectral data. The values used in our calculations 
are those given by Pople and Segal (1966). The values of the ß’s are chosen in 
such a way that C.N.D.O. calculations give the best fit with more accurate 
S.C.F. calculations on small molecules. Values of the ß parameters have been 
given by Pople and Segal (1965u). The program used was a slightly modified 
version of a program written by Segal and distributed by Q.C.P.E. (1969). 
A number of calculations by the C.N.D.O./2 method were carried out. The 
results of the computations on different molecules and groups will be given 
in the next sections.

4.3 Calculations on the urea molecule

In order to see whether the C.N.D.O./2 method is capable of predicting 
geometric data, several calculations on the urea molecule have been done at 
different geometries. In accordance with experimental evidence (Pryor and 
Sanger, 1970) the urea molecule was assumed to be planar and to have reflec
tion symmetry. Bond lengths used in the calculation were chosen as in the 
uronium ion to give a common basis to different calculations. (C—O: 1.307Ä; 
C-N: 1.308Ä;N—H: 1.00Ä). The angles around the nitrogen atoms were kept 
arbitrarily at 120°. Calculations were performed for a number of different 
values of the angle a as defined in figure 4.1., ranging from 100° to 140° with 
intervals of 5°. The coordinates of the atoms needed for the C.N.D.O. program 
were obtained by means of a small computer program to secure the accuracy 
of the input data. For each of the geometries the total energy was computed 
as a sum of the electronic energy and the repulsion due to the charges of the 
different nuclei and cores. The electronic energy is calculated according to

O

m

H(2) H(3)

Figure 4.1
The geom etry o f  the urea molecule
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the formula:

V K Ï  V W  (4-16)

Values of the total energy computed are given in table 4.1 and figure 
4.2. As seen from the figure the total energy has a minimum at about 121°. 
The experimental value for this angle is 121.7° (Pryor and Sanger, 1970).

a E(a.u.) a E(a.u.)
100 -51.6989 125 -51.7711
105 -51.7299 130 -51.7534
110 -51.7561 135 -51.7103
115 -51.7692 140 -51.6101
120 -51.7757

Table 4.1
Total energy o f the urea molecule as function o f  a

-------------->  <X ( o )
Figure 4 .2

The to ta l energy o f  the urea molecule as a function  o f  a
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The calculated dipole moment (including atomic dipole contributions) 
at the minimum energy is 5.4 D(ebye). This dipole moment should be compar
ed with the experimental value of 4.6 D measured in dioxane at 25°C. The di
pole moment of urea measured in other solvents ranges from 4.2 to 6.4 D 
(McClellan, 1963).

It will be assumed in this chapter that bond distances are mainly depen
dent on n bond orders, as is common practice in the chemistry of conjugated 
compounds (Häfelinger, 1970). The o bond orders were also calculated in our 
computations. The results show that differences in o bond orders are an order 
of magnitude smaller than differences in the corresponding it bond. This is in 
accordance with the 1r approximation theory (Parr, 1964, chapter 3) which is 
supposed to be valid for planar unsaturated molecules.

The 7T bond orders for the C-N and C -0  bonds are .478 and .677 res
pectively. These figures show that the C—N bond has some double bond 
character and that the C—O bond is not a ‘pure’ double bond, indicating that 
a certain amount of bond delocalisation is present. In accordance with these 
calculations the length of the C-N bond in urea (1.352(2)A) is less than the 
length of a single C—N bond (1.47(2)Ä) (Häfelinger, 1970a). The length of the 
C -0  bond (1.260(3)Ä) is intermediate between the length of a single and 
double C -0  bond (1.43(2)Äand 1.17(2)Ä) (Häfelinger, 1970*>).

4.4 Calculations on the uronium ion

A number of calculations were performed on the uronium ion. The total 
energy has been calculated as a function of the angles a and ß defined in figure 
4.3. Bond lengths and fixed angles were taken as in the former calculations on

H(5)

O

<X C

H(2) H(3)

Figure 4 .3
The geom etry o f  the uronium ion
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a
ß 100 110 120 130 140

100 -52.2591 -52.2850 -52.2990 -52.3010 -52.2912

110 -52.2955 -52.3177 -52.3267 -52.3221 -52.3037

120 -52.3175 -52.3346 -52.3371 -52.3240 -52.2936

130 -52.3268 -52.3371 -52.3310 -52.3059 -52.2535

140 -52.3295 -52.3278 -52.3095 -52.2625 -52.1546
Table 4.2

Total energy (a.u.) for the uronium ion at different values o f a and ß
a

ß 110 113.3 116.6 120

120 -52.3346 -52.3372 -52.3380 -52.3371

123.3 -52.3396 -52.3413 -52.3412 -52.3393

126.6 -52.3384 -52.3392 -52.3383 -52.3354

130 -52.3371 -52.3370 -52.3350 -52.3310
Table 4.3

Total energy (a.u.) for the uronium ion at different values o f a and ß

Figure 4.4
Contour diagram giving the total energy for the uronium ion as a function o f  
a and ß. The energy difference between two lines is .001 a.u. The experimental 
value o f  a and ß are denoted by a +



49

the urea molecule. Values of the total energy computed are given in tables 4.2 
and 4.3 and in figure 4.4. From figure 4.4 it becomes evident that the cal
culated energy minimum is not far from the experimental one. Here, as in the 
case of the urea molecule, the C.N.D.O./2 method predicts bond angles which 
are in fair agreement with experimental ones.

The 7T bond orders for the C-N and C—O bonds in uronium nitrate are 
.595 and .443 respectively. Comparison of these values with those found in 
the urea molecule shows that a lengthening of the C—O and a shortening of 
the C—N bond is to be expected when urea is protonated. These facts are in 
accordance with experimental evidence as described in chapter II.

4.5 Nitrate ion

For comparison with subsequent computations the electronic structure 
of the nitrate ion was calculated by means of the C.N.D.O./2 method. The 
geometry used in the calculations was a planar ion with bond angles of 120° 
and N -0  bond lengths of 1.238Ä (mean of the experimental values found in 
uronium nitrate). The numbers of interest are: number of valence electrons on 
the N and O atoms 4.39 and 6.54 respectively; n bond order for the N—O 
bond: .572.

4.6 Influence of hydrogen bonding on bond lenghts

A number of cases has been reported in which was stated that intra
molecular bonding may be influenced by intermolecular hydrogen bonds. In 
a recent example (Craven, Cusatis, Gartland and Vizzini, 1969) it was found 
that a C=0 bond is lengthened when the oxygen atom is the acceptor of a 
strong hydrogen bond. The increase in C=0 bond length is accompanied by a 
shortening of the other bonds involving the carbon atom. Another example of 
these interactions via hydrogen bonds may be found in the structures of mono
meric and dimeric carboxylic acids (Derissen, 1971). These effects are very 
similar to those found in donor—acceptor complexes which have been re viewed 
by Bent (1968). In uronium nitrate a significant difference is found in the 
bond length of the nitrate ion. Deformations of this kind have also been found 
in N—methyluronium nitrate (Selman and Harkema, 1971) and thiouronium— 
nitrate (Feil and Song Loong, 1968). In these compounds there is a correlation 
between the length of an N—O bond and the number and strength of hydrogen 
bonds to the oxygen atom under consideration. The shortest N—O distances 
are found for those oxygen atoms which are not or weakly hydrogen bonded. 
The longer distances occur when the oxygen atom is the acceptor of a short 
(strong) O -H . . . O hydrogen bond (table 4.5).
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In order to see whether differences of this kind may be predicted by 
quantumchemical calculations we performed C.N.D.O./2 calculations on the 
geometries defined in figure 4.5. Intramolecular distances and angles were 
taken as in the former calculations. The lengths of the hydrogen bonds were 
assumed to be: O-H . . .  O: 2.60Ä;N-H. . . O: 2.96Ä.

0 ( 2) 0 ( 3 )

0 ( 1)

Figure 4.5
Arrangements o f  uronium and nitrate ions which have been treated by the 
C.N.D.0./2 method. The numbering o f the atoms in uronium ion A and B is 
given in figure 4.3.
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a b c d e f

C -N ( l) .478 .597 .565 .501 .572 .600

C -N  (2) .478 .593 .577 .498 .582 .598

C -0 .687 .443 .499 .647 .487 .436

N—0  (1) .572 .498 .367 .526
N—0  (2) .572 .599 .659 .588
N—0  (3) .572 .615 .652 .602

Table 4.4
7r bond orders for different arrangements o f uronium and nitrate ions.

a. urea molecule
b. uronium ion
c. uronium + nitrate ion (fig. 4.5 I  )
d. urea + nitric acid molecule (fig. 4.5 II )
e. uronium ion (fig. 4.5 UIA)
1 uronium ion (fig. 4.5 IIIB)

The most important values of the n bond orders have been collected in 
table 4.4. From this table it is clear that calculations on bond orders indicate 
that bond lengths are influenced by hydrogen bonding.

Considering first the nitrate ionf it is seen (table 4.4 column c) that when 
0(1) accepts a strong hydrogen bond the result will be a decrease in N—0  (1) 
bond order and an increase in the bond orders involving the other two oxygen 
atoms. When the atoms 0(2) and 0(3) are also (more weakly) hydrogen bond
ed the differences in bond orders become smaller (table 4.4, columns e + f). 
If on the other hand a calculation is made for the nitric acid molecule (which 
may be considered to be a very strong hydrogen bonded nitrate ion) differences 
in bond orders are considerable, resulting in a large difference in N—O bonds. 
Bond lengths in nitrate ions in which one oxygen atom is more strongly 
hydrogen bonded than others are thus expected to be intermediate between 
the values for the nitric acid molecule and the unperturbed nitrate ion.
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N -O (l) 1.256(4) O -H . .0 2.59

N -0  (2) 1.242(4) N -H  . . 0 2.91

a N -H . .0 2.92

N -0  (3) 1.233 (4) N -H  . . 0 2.95
N -H  . . 0 2.98

N -O (l) 1.259(4) O -H . . 0 2.57
N -0  (2) 1.246(4) N -H  . . 0 2.90

b N -H  . . 0 2.92
N -0  (3) 1.219(4) N -H  . .0 2.95

N -0  (1) 1.239(4) N -H  . . 0 2.94
N -H . .0 2.97

c N -0  (2) 1.233(4) N -H  . . 0 2.88
N -H  . . 0 3.16

N -0  (3) 1.217(4) N-H . . 0 3.16

Table 4.5
Comparison o f different N - 0  bond lengths (A) in uron ium N -m ethyl
uronium-, and thiouronium nitrate. The columns o f  the table give bond lengthy 
type o f hydrogen bond to oxygen atom o f nitrate ion, length o f the hydrogen 
bond.
a. uronium nitrate (chapter II)
b. N-methyluronium nitrate (Selman and Harkema, 1971)
c. thiouronium nitrate (Feil and Song Loong, 1968)

Values for N—0  lengths in three structures in which differently bonded 
nitrate ions occur are given in table 4.5. In this table bond lengths are given 
in decreasing order for the different molecules. The nature and number of 
hydrogen bonds to the oxygen atoms of the nitrate ions are also given in the 
table. Inspection of the table reveals that the longest N—O distances are to
the oxygen atom which accepts the rather strong O - H .........O bond or to the
atom which accepts the strongest N -H ........ O bonds (thiouronium nitrate).
The shortest N—0 distances are always to the oxygen atoms which are the
acceptors of the weakest N - H ..........0  bonds. Thus the expectations based
on the calculations of table 4.4 are in accordance with the experimental 
facts (table 4.5).

Considering now bond lengths in the uronium ion (urea molecule) it is 
seen from table 4.4 that for this ion relations similar to the ones in the nitrate 
ion are to be expected. When the urea molecule is protonated or strongly
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compound Rei C-N C -0 type length

urea a 1.352 (2) 1.260 (2) N -H  . . .  O 2.99
2.99
3.03
3.03

urea-oxalic acid b 1.320 (5) 1.260(3) O-H . . .  O 2.47
uronium phosphate c 1.331 1.284 oo

2.42
N-methyluronium nitr. d 1.308 (5) 1.301 (4) — —
uronium nitrate e 1.307 (3) 1.311 (4) — —

Table 4.6
C -N  and C -0  bond length in urea compounds. The types and lengths o f  the 
hydrogen bonds to the oxygen atom are also given.
a. Pryor and Sanger (19 70)
b. Harkema, Bats, Weifenberg and Feil (1971)
c. Konstansek and Busing (1970)
d. Selman and Harkema (1971)
e. chapter II.

hydrogen bonded (at the oxygen atom) the C—0 bond should become longer 
and the C-N bond somewhat shorter depending on the strength of the hydrogen 
bond. Bond lengths for different urea compounds have been collected in table 
4.6. The compounds have been arranged in order of increasing hydrogen bond
strength. In urea the oxygen atom is the acceptor of weak N—H .........O bonds.
In urea-oxalic acid the bond concerned is a much stronger O—H .........O bond.
In uronium phosphate a very short 0 ........ H ......... O bond is found in which
the proton is shared between the two oxygen atoms. Two examples of the 
uronium ion are also given. From the table it can be verified that (with one 
exception) the C—O bond becomes longer and the C—N bond shorter, when 
the strength of the hydrogen bonds is increased. (When comparing values in 
table 4.5 it should be noted that the distances in the urea molecule are cor
rected for thermal motion, the others are not).

Summarizing the results ofthis chapter it can be stated that the C.N.D.O./2 
method is capable of predicting the geometries of urea and the uronium ion. The 
influence of hydrogen bonds to the nitrate ionand the urea molecule can explain 
experimental differences in bond lengths.
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CHAPTER V

CALCULATIONS WITH DIFFERENT 
FORM FACTOR MODELS

5.1 Introduction

In the preceding chapters it has been shown that comparison of X-ray 
and neutron diffraction results can give information on the redistribution of 
charge which occurs when atoms combine to form a molecule. Furthermore 
it has been shown that quantumchemical methods exist which can predict 
a number of geometrical properties of urealike molecules. The quantumme- 
chanical methods also provide a means by which charge distributions may be 
estimated. The purpose of this chapter is to investigate what information on 
electron density is obtainable from diffraction experiments.

The coherent scattering power f of a system of N—electrons described 
by the state function \j/ is:

N
f(s) = ƒ 2  exp (is-rj) \Jj drx .........drN (5.1)

i=l
In this formula s is the scattering vector (James, 1965, chapter 3). In the case 
that the wave function is composed of a single Slater determinant construc
ted from orthogonal Molecular Orbitals fa, formula 5.1 may be written as- 

N
f(s)= S exp (is.r) ^  dr (5.2)

i=l
In the M.O.—L.C.A.O. approximation (chapter 4) this equation can be reduced 
to a sum of terms involving atomic arbitals: 

occ
f(s )= £  S Cjui Cpi fjuzXs) = ^ P/i  ̂f/n>(s) (5-3)

i=l ß , v  \x,v

fM„(s) = ƒ XM* exp (is.r) xv dr (5.4)

In eq. 5.3 and 5.4 the summations fjt and v extend over all atomic orbitals 
used in the basis set. The summation i is over all occupied M.O.‘s. The problem 
of calculating form factors for molecular systems is thus reduced to the
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calculation of form factors (s) involving at most two different atomic 
centers. The relation between quantumchemical calculations and molecular 
scattering is via the P/U» coefficients. The pHP terms (elements of the charge- 
bond order matrix) are the results of quantumchemical calculations.

5.2 Basis functions

The wave functions (atomic orbitals) used as a basis in atomic and mole
cular orbital calculations are usually given as a product of a radial part R(r) 
and angular part Yim (0, 0) (spherical harmonics):

x (r, ©, <t>) = R(r) Ylm (0, <t>) (5.5)

(Eyring, Walter, Kimball, 1944, chapter 9). The R(r) and Y jm (0, 0) are norma
lized functions. In describing the radial part of the wave functions two types 
of functions are commonly employed: Slater and Gauss functions.
Slater Type Orbitals with quantumnumber n are defined by:

xn = Nn rI1’le x P (“ ?r) (5*6)

is a normalizing constant given by:

Ns = (2r)n+y2 [(2n)! ] ’ 1/2 (5.7)

Gaussian Type Orbitals are defined by the equations:

x„ = r11' 1 exp ( - a r 2) (5.8)

n G = 2n+% a (2n+l)/4 n v* [(2n— 1)! ! ] V2 (5.9)

Of these two types of orbitals the Slater functions are more convenient 
in describing atomic wave functions. A good approximation to the radial part 
of an atomic wave function can usually be obtained by the sum of a small 
number of Slater functions. To obtain the same accuracy with Gauss functions 
one needs an expansion of more terms. Notwithstanding this disadvantage 
Gauss functions are extensively used in molecular computations due to the 
fact that integrals involving this type of function are easier to calculate than 
the corresponding integrals over Slater functions. Most of the integrals needed 
in molecular calculations can be written in analytical form when one makes 
use of Gaussian functions (Shavitt, 1962). In calculating integrals over S.T.O.’s
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one often has to use numerical integrations or expansion techniques (Harris and 
Michels, 1967).

Turning now to the calculation of the i^v matrix elements one can dis
tinguish two different cases:

(1) The orbitals and xv belong to the same atom. In this case analytical 
expressions for the matrix elements can be derived for both S.T.O.’s 
and G.T.O.’s .

(2) The orbitals belong to different atoms. For this case analytical expres
sions have been derived for G.T.O.’s. For S.T.O.’s one has to usenumerical 
integration (Bonham, 1965) or expansion techniques (Guerillot, Gana- 
chaud, Lissilour, 1968). The most convenient way at this moment seems 
to be the expansion of S.T.O.’s as a sum of a small number of G.T.O.’s 
as described by McWeeny (1953) and Stewart (1969^).

5.3 Calculation of scattering factors from Slater orbitals

As shown first by McWeeny (1951) analytical expressions for the scat
tering of an electron density described by a product of S.T.O.’s centered on 
the same atom can be derived. The scattering of a density involving p-orbitals 
is not only dependent on the lenght of the scattering vector s but also on the 
angle between the scattering vector and the symmetry axes of the p-orbitals. 
McWeeny (1951) demonstrated that the scattering factor of densities of this 
type may be described by two principal factors i// and fj_ in which the vector s 
is paralell or perpendicular to the symmetry axes of the p-orbitals. The resul
ting scattering factor in the case that s has an arbitrary angle with the p-orbitals 
is a simple function of the principal factors and the angles between s and the 
p-orbital symmetry axis.

General formulae for the calculation of the principal scattering factors 
have been described (Harkema, 1970a). The formulae for the principal scat
tering factors fj_ and f// are given below. The n and v indices denote 
Slater Orbitals o t s  or p type with quantumnumbers n* and n2 and coef
ficients K) and ? 2 •

fss = N S n 1+n2 ! (y)/y

f//sp = i N ts n1+n2-2(y)/y2 - cn 1+„2-iW /y ]

fl s p -  0

(5.10)

(5.11)

(5.12)
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f fp p -N  i s „ , .M. . 0 ' » + J c n , .« .2 W /y ! ,3(y)/y3]
(5.13)

gpp ■ N [s„i , n5- ,0 ') /y ’ - c n i , „ ! - g ™ y ’ ) (5.14)

The variable y and the constant N occuring in the formulae are given by

y =s 4n sin 6 / (X (f  i + ?2 )) (5.15)

(5.16)

(0 : diffraction angle, X: wavelength of the radiation used).

The function Sfl(x) is defined by:

S (x) = ƒ tn exp ( - t )  sin xt dt. 
n 0

(5.17)

The function Cn (x) is given by an integral similar to (5.17) in which the sine 
function in the integrand is replaced by a cosine function of the same ar
gument. The integrals S„(x) and Cn(x) can be calculated from recurrence 
relations which may be derived by partial integration of eq. 5.17 and the 
values of S0(x) and C0(x). For small values of n, Sn(x) and C„(x) can also 
be obtained from explicit formulae derived from the recurrence relations.

The derivation of the equations for the scattering factors will be demon
strated for the {// factor. Inserting the proper expression for the atomic 
orbitals in (5.4) gives.

f// pp = N«, ƒ rni +n2‘ 4exp [-(f i + f 2)r + is.r ] (i.r)2 dr (5.18)

In this equation i is a unit vector parallel to the symmetry axis of the p orbitals. 
Converting to polar coordinates (r, 0, 0) yields:

f//pp = Nnt Nn2 /ƒƒ rni+n2 exp [ - ( f , + f 2 )r + isr cos 0  ] (5.19)

cos2 © sin © d© d0 dr

The integral is split into two parts by substituting:

exp (isr cos © ) = cos (sr cos 0  ) + i sin (sr cos © ) (5.20)

After this substitution and integration over <p the real part of the scattering 
factor (f//pp) is given by:
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f//r = /  rni+n2exp [—(f 1 2)r ] dr ƒ cos (sr cos 0 ) cos2© sin © d© (5.21) 
u PP o 0

Integration over © (partial integration) gives as a result for the second integral 
of (5.21):

(2/sr)[sin (sr) + 2 cos (sr)/sr -  2 sin (sr)/(sr)2 ] (5.22)

Taking as a variable y (defined in (5.15)) gives as the final expression for the 
real part of the scattering factor the formula given in (5.13).

The imaginary part of the scattering factor which results from substitu
tion (5.20) is:

oo 7j
in 1 = i ƒ r111+112 exp [—(fi + f2)r ] dr ƒ sin (sr cos ©) cos2 © sin © d©

PP 0 0 (523)
As the integrand of (5.24) is an odd function with respect to © = n/2 the 
imaginary part of the scattering factor is zero as required by the centrosym- 
metric charge distribution.

The formulae giving the scattering factor for orbital products involving 
p orbitals as a function of the angles (a or ß) between the scattering vector s 
and the symmetry axes of the p orbitals are (Harkema, 1970^):

V s) = f //sp COSOi

f _ (s) = in cos2 a + f . sin2 a P1P2 x/PiP2 J-P1P2

when pi and P2 have the same symmetry axis

fp ,p 2(s) = (f//piP2 -  fl PlP2) COSa!COS0 <5'26)

when pi and p2 have symmetry axes perpendicular to each other.

With the formulae given in this section the total scattering power of an 
atom can be calculated when the electronic configuration is known. The 
electronic configuration is fully specified by the values of the population 
coefficients defined in eq. 5.3. In the one centre case the indices fx and v 
denote orbitals which are centered on the same atom. The total number of 
electrons on an atom is given by the sum of the terms (summed over all 
orbitals on the atom concerned). When dealing with one centre terms the 
wave function should be normalized in such a way that the sum of the P/UP 
terms summed over all orbitals equals the total number of electrons in the 
molecule. Scattering factors for atoms which have no spherical symmetry (for

(5.24)

(5.25)



60

instance hybridized atoms in which different hybrids do not contain the same 
number of electrons) are easily constructed with the given formulae. The 
principal scattering factors may also be used to separate the scattering due to 
valence and core electrons. In the atoms C, N and O the ‘core scattering’ is 
caused by two Is electrons. The ‘valence scattering’ depends on the 2s and 2p 
electrons. The scattering of the 2p electrons has to be spherically averaged 
which may be accomplished by taking:

fPP= J < f//pp+ 2 f lp p )  (5 -2 7 )

In this way scattering factors for the core and valence electron distributions 
can be obtained.

A computer program — SCAT — has been written which calculates the 
different principal scattering factors for a given value of I s I . The values of 
these factors for the carbon, nitrogen and oxygen atom are given in tables 
5.1, 5.2, and 5.3 respectively. In these tables the total scattering factor of the

Different scattering factors for the carbon atom as a function o f sin 6/X
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atom and the scattering factor of the core electrons are also given. The atomic 
wave functions used were the accurate atomic functions given by Clementi 
(1965). The behaviour of the different factors for the carbon atom is shown 
in figure 5.1. From this figure and the tables it is clear that for values of sin 0/A 
greater than .5 the scattering of the atom is almost exclusively due to the

sin 6/X f-lsls f2s2s f//2p2p ^l2p 2p f2s2p valence total

.00 1.000 1.000 1.000 1.000 0.000 4.000 6.000

.05 .998 .946 .882 .960 .294 3.759 5.756

.10 .993 .802 .597 .854 .503 3.141 5.127

.15 .984 .614 .281 .715 .591 2.369 4.337

.20 .972 .428 .029 .573 .576 1.638 3.582

.25 .957 .271 -.131 .447 .502 1.051 2.964

.30 .939 .155 -.212 .343 .404 .625 2.502

.35 .918 .076 -.240 .261 .307 .340 2.176

.40 .895 .027 -.236 .199 .223 .160 1.950

.45 .870 -.001 -.217 .151 .155 .005 1.795

.50 .843 -.014 -.192 .116 .103 -.002 1.684

.55 .815 -.018 -.166 .089 .065 -.028 1.602

.60 .786 -.017 -.141 .069 .036 -.036 1.536

.65 .756 -.013 -.119 .053 .017 -.034 1.478

.70 .726 -.008 -.099 .042 .003 -.027 1.425

.75 .695 -.003 -.083 .033 -.006 -.018 1.373

.80 .665 .001 -.069 .026 -.012 -.008 1.321

.85 .635 .005 -.058 .021 -.016 .000 1.270

.90 .605 .009 -.048 .017 -.017 .008 1.217

.95 .576 .011 -.040 .014 -.018 .014 1.165
1.00 .547 .013 -.034 .011 -.018 .019 1.113
1.05 .519 .015 -.028 .009 -.018 .023 1.061
1.10 .493 .016 -.024 .008 -.017 .026 1.011
1.15 .467 .016 -.020 .006 -.016 .028 .961
1.20 .442 .017 -.017 .005 -.015 .029 .913
1.25 .418 .017 -.015 .004 -.014 .029 .866
1.30 .395 .016 -.013 .004 -.013 .030 .820
1.35 .374 .016 -.011 .003 -.012 .029 .777
1.40 .353 .016 -.009 .003 -.011 .029 .735
1.45 .334 .015 -.008 .002 -.010 .028 .695
1.50 .315 .015 -.007 .002 -.009 .027 .657
1.55 .297 .014 -.006 .002 -.008 .026 .621

Table 5.1
Different atomic form factors for the carbon atom.



Scattering of the core electrons. The contribution of the valence electrons 
which dominates the atomic scattering factor at small values of sin 6/X is 
seen to decrease rapidly with increasing sin 6/X.

sin 6/X flsls f2s2s f//2p2p ^l2p 2p ^2s2p valence total

.00 1.000 1.000 1.000 1.000 .000 5.000 7.000

.05 .999 .961 .919 .937 .249 4.787 6.784

.10 .995 .855 .709 .897 .445 4.214 6.204

.15 .988 .707 .447 .791 .560 3.444 5.421

.20 .980 .546 .202 .674 .594 2.641 4.600

.25 .968 .395 .011 .599 .566 1.920 3.857

.30 .955 .268 -.117 .456 .501 1.332 3.242

.35 .940 .169 -.192 .369 .421 .883 2.762

.40 .922 .097 -.228 .296 .340 .557 2.402

.45 .903 .047 -.238 .237 .265 .331 2.137

.50 .883 .015 -.231 .190 .201 .179 1.944

.55 .861 -.004 -.216 .152 .147 .081 1.802

.60 .838 -.013 -.196 .122 .105 .021 1.696

.65 .814 -.017 -.175 .099 .071 -.012 1.615

.70 .789 -.017 -.155 .080 .045 -.028 1.549

.75 .763 -.014 -.135 .065 .025 -.034 1.493

.80 .738 -.010 -.117 .053 .011 -.032 1.443

.85 .712 -.006 -.102 .043 .000 -.027 1.396

.90 .686 -.002 -.008 .036 -.007 -.020 1.351

.95 .660 .002 -.076 .029 -.012 -.013 1.307
1.00 .634 .006 -.065 .024 -.016 -.005 1.263
1.05 .609 .009 -.056 .020 -.018 .001 1.219
1.10 .584 .010 -.049 .017 -.019 .008 1.175
1.15 .559 .013 -.042 .014 -.020 .013 1.132
1.20 .536 .015 -.037 .012 -.020 .017 1.088
1.25 .512 .016 -.032 .010 -.019 .021 1.045
1.30 .490 .017 -.028 .009 -.019 .023 1.003
1.35 .468 .017 -.024 .007 -.018 .025 .961
1.40 .446 .018 -.021 .006 -.017 .027 .920
1.45 .426 .018 -.018 .006 -.016 .028 .880
1.50 .406 .018 -.016 .005 -.015 .029 .841
1.55 .387 .017 -.014 .004 -.014 .029 .804

Table 5.2
Different atomic form factors for the nitrogen atom.
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5.4 Calculation of scattering factors from Gauss orbitals

When dealing with Gauss functions analytical expressions for the scatter
ing factor may be derived in both the one and two center cases. In the derivation 
of the formulae one makes use of the integral:

sin 6/X

.00

.05

.10

.15

.2 0

.25

.30

.35

.40

.45

.50

.55

.60

.65

.70

.75

.80

.85

.90

.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50
1.55

f ls ls

1.000
.999
.996
.991
.985
.976
.966
.954
.940
.925
.909
.892
.873
.854
.833
.812
.791
.769
.747
.724
.702
.679
.657
.634
.612
.590
.569
.548
.527
.507
.487
.468

^2s2s

1.000
.971
.891
.774
.638
.501
.376
.268
.182
.115
.066
.032

-.009
-.005
-.013
-.016
-.016
-.015
-.012
-.008
-.005
-.001
.002
.006
.008
.011
.013
.014
.016
.017
.017
.018

f//2p2p

1.000
.937
.768
.547
.323
.133

-.013
-.113
-.176
-.211
-.226
-.227
-.220
-.207
-.191
-.175
-.158
-.142
-.127
-.113
-.099
-.088
-.078
-.069
-.061
-.054
-.048
-.042
-.037
-.033
-.029
-.026

fl2p2p

1.000
.979
.919
.832
.733
.631
.535
.449
.375
.311
.258
.214
.178
.147
.123
.102
.086
.072
.060
.051
.043
.036
.031
.026
.023
.019
.017
.014
.013
.011
.009
.008

f2s2p

.000

.216

.397

.520

.580

.585

.551

.494

.427

.358

.292

.233

.182

.139

.104

.075

.051

.033

.018

.007
-.001
-.008
-.012
-.016
-.018
-.019
-.020
-.020
-.020
-.020
-.019
-.019

valence

6.000
5.801
5.257
4.497
3.662
2.862
2.162
1.584
1.128

.779

.520

.332

.199

.107

.046

.008
-.015
-.027
-.031
-.031
-.027
-.022
-.017
-.010
-.004
.001
.006
.011
.015
.018
.021
.023

total

8.000
7.799
7.249
6.479
5.631 
4.815 
4.093 
3.492 
3.008 
2.630 
2.338 
2.115 
1.945 
1.814 
1.713
1.632 
1.567 
1.511 
1.462 
1.417 
1.376 
1.336 
1.297 
1.258 
1.220 
1.182 
1.144 
1.106 
1.069 
1.032

.996

.960

Table 5.3
Different atomic form factors for the oxygen atom.
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ƒ exp ( - a  I r I 2 * p.r) dr = n ^  a ^  exp (— I p I 2/4a) (5.28)

This result is also valid when p is a complex quantity.

The coordinate system used in the two center case is given in figure 5.2. 
The scattering factor for the product of two Is orbitals of which one is on 
center A and the other on center B is given by:

fls is  = N ƒ exp ( - a  I ra i 2 -  ß I rb I 2 + i s.r) dr (5.29)

In this expression N is a normalizing constant consisting of the product of the 
normalizing constants of the separate orbitals as given in eq. 5.7. Introduction 
of the expressions for ra and r^ in terms of a,b, and r leads to the equation:

Figure 5.2
The coordinate system used in the calculations o f  two center scattering factors. 
The origin is denoted by O
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fls ls  = N ƒ exp [-(a  + ß) I r I2 + (2aa + 2/3b + is). r] dr (5.30)

Applying eq. 5.28 gives:

f, , = N 77 -2 (a+i3)"' exp [(—4ajS (a-b)2 + 4is.(aa+ßb) -  I s l2)/4(a+ß))]
(5.31)

Scattering factors for s orbitals with quantum numbers n = 3, 5, 7 . . . can be 
obtained from the Is, Is scattering factors (5.31) by (repeated) differentiation 
with respect to a or ß. Scattering factors for px, py and pz orbitals can be cal
culated from (5.31) by differentiation with respect to sx, s and sz respective
ly (Groenewegen and Feil, 1969). Differentiations have to be carried out after 
the origin has been moved to the point on which the orbital concerned is cen
tered.

In this way the following expressions for the scattering factors of Is and 
2p orbitals have been derived. The origin of the coordinate system is taken in
the midpoint of the bond.

flsls = 23/2 ( aß ) 14 (a+ßy 312 exp [-A ,.A b/(a«0] (5.32)

f  ls2pi: ~ 7^  (a+P y ' (Pb - \ )  f ls ls  (5-33)

f  2P2p =  2 (00) V / 3 ) - 1 [Pa.Pb -2(Pa.Ab)(Pb.AaXa^)-' ]f,s, s (5.34)

In those formulae Aa and Ab are given by:

Aa = a R - i s/2 (5.35)

Ab =0R + is/2 (5.36)

Pa and Pb are unit vectors parallel to the symmetry axes of the p orbitals. 
Equations 5.32 to 5.34 are similar to those given by Stewart (1969^).*)

A computer program - GAUSS - has been made by which the scattering 
factors for the different orbital products can be calculated. The orbitals used 
in the computations are the three term G.T.O. expansions of atomic orbitals 
given by Stewart (1969a). The input of the program consists of the atomic

*) The equations derived by Stewart contain a sign error. This mistake has been car
ried over in some of his calculations. Therefore not all scattering factor curves given in 
his article are correct.
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numbers of the atoms and the quantum numbers necessary to specify the type 
of the orbitals for which the scattering factors have to be calculated. The rest 
of the input contains information concerning the vectors s, R, P , and ?u. 
With help of this program a number of scattering factor curves have been cal
culated, examples of which are given in figures 5.3 and 5.4. The two-center 
curves indicate that the importance of valence electron scattering rapidly de
creases with increasing sin 0/A. The same result was found in the one center 
case.

Figure 5.3
Scattering factors for two-center 2s and 2p orbital products. All factors are cal
culated for two carbon atoms at a distance o f  1.35Ä. The factors are real, 
except no II which is imaginary.
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5.5 Determination of the number of valence electrons

As described in section 5.3 it is possible to calculate seperately the 
scattering factors of the valence and core electron densities for the different 
atoms. These scattering factors do not include any effect of chemical bonding. 
They are calculated normally for atoms in their ground state. This separation 
of scattering factors makes it possible to estimate the number of valence elec
trons on the different atoms in a crystal structure.

Sin e /x

Figure 5.4
Complex scattering factors o f some orbital products. The absolute value o f the 
scattering factor and the phase angle (in cycles} are given. The distances used 
in the calculations are C-C: 1.35Ä, C-N: 1.37Ä, and H-N: .91Ä
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This can be accomplished by replacing each atom for which the number of 
valence electrons is to be determined by two hypothetical atoms. The first 
‘atom’ consists of the core electrons. The second ‘atom’ contains the valence 
electrons. The number of valence electrons can be determined by refining in 
the least-squares procedure an occupancy factor for each ‘valence-electron 
atom’. In these calculations one uses the mean scattering factor of a 2s and 2p 
electron density. As differences between the 2s and 2p electron density scat
tering factors of the same atom are small, no serious errors are introduced. 
The procedure outlined has as a disadvantage that there is a strong correlation 
between different parameters which are refined simultaneously. Strong cor
relations are expected between thermal parameters, occupancy factors and the 
scale factor*. To overcome these difficulties one has to fix a number of para
meters. This can be done for instance by using positional and thermal para
meters which have been obtained from refinement of data collected in that 
part of reciprocal space where the influence of valence electron scattering is 
small (sin 0/A >  .5). Another way is to fix positional and thermal parameters 
at the values resulting from a neutron diffraction study on the same compound. 
The latter procedure has been adopted in our work. Parameters have been 
taken from the work of Worsham and Busing (1969). Numbers of valence 
electrons for the atoms in uronium nitrate determined in this way are dis
played in table 5.4, column a. The values have been obtained by refining the 
number of valence electrons (the number of core electrons for the heavy atoms 
was 2) and a scale factor. The resulting R-factor in this case - 4.8% - is significant
ly better than the value found by using the ‘standard’ number of valence 
electrons (R = 5.7%, section 3.3.).

a b c a b c

c 3.97(8) 3.84(8) 3.45 0(4) 6.45 6.24 6.21
N(l) 4.74 4.58 4.39 H(l) .72(5) .70(5) .78
N(2) 5.63 5.44 5.22 H(2) .82 .79 .79
N(3) 5.43 5.25 5,23 H(3) .67 .65 .79
0(1) 6.42 6.21 6.54 H(4) .82 .79 .79
0(2) 6.63 6.41 6.54 H(5) .87 .84 .68
0(3) 6.48 6.26 6.54

Table 5.4.
Number o f valence electrons for the different atoms in uronium nitrate. a: de
termined by X-ray diffraction; b: X-ray results after renormalization (see text); 
c: calculated by the C.N.D.O./2 method.

*) The factor by which calculated structure factors have to be multiplied to be on 
the same scale as the experimental ones. Measurements on an absolute scale are difficult 
to perform in single-crystal diffractometry.



P ls ls P 2s2s 2Px 2px ^2py 2pv P2pz 2pz P 2s 2px P 2s 2pv 2Px 2pv

c 2 .000 .992 .898 .886 .691 .004 .008 .011

N( 1) 2 .000 1.302 1.122 1.134 .860 .062 .017 .018

N (2) 2 .000 1.190 1.127 1.161 1.743 .063 -.025 .015

N (3) 2 .000 1.207 1.145 1.152 1.684 -.069 -.063 .004

0 (1 ) 2 .000 1.814 1.892 1.106 1.721 .128 -.405 .275

0 ( 2 ) 2 .000 1.790 1.143 1.941 1.617 -.423 .086 .170

0 (3 ) 2 .000 1.842 1.589 1.325 1.803 .251 .323 -.510

0 ( 4 ) 2 .000 1.654 1 .472 1.194 1.882 -.386 .167 .051

H (l) . 79 - - - - - - -

H (2) . 79 - - - - - - -

H (3) . 79 - - - - - - -

H (4) . 79 - - - - - - -

H (5) . 75 - - - - - - -

table 5.5

Elements o f the charge-bond order matrix used in the calculations with aspherical scattering factors.
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It is interesting that the redistribution of electrons over the different atoms 
gives also a better comparison in the X-ray results. If a refinement is made us
ing atomic scattering factors based on electron densities obtained by the 
C.N.D.O./2 method, the resulting R-factor is 3.8%. The corresponding R-factor 
calculated with neutral atoms was 4.1% (section 2.5).

The method described is not correct in so far that the total number of 
valence electrons is not a fixed number in the refinement. In order to correct 
more or less this effect we have renormalized the number of valence electrons 
in such a way that the total number of valence electrons equals 48.

The number of electrons after renormalization are given in table 5.4 
column b. The table also shows the number of valence electrons calculated by 
the C.N.D.O./2 method (chapter IV). Inspection of the table reveals that the 
number of electrons of chemically equivalent atoms are close to each other. 
Comparison of experimental and calculated numbers shows a fair agreement. 
The total number of valence electrons for the uronium ion is 24.5, for the 
nitrate ion 23.5. The ‘theoretical’ number of valence electrons is 24 for each 
ion, assuming complete ionization.

The method described in this section is very similar to the (Extended) 
L-shell Projection Method described recently by Stewart (1970) and Coppens, 
Pautler and Griffin (1971).

5.6 Calculations with scattering factors based on aspherical electron densities

The electron density in a molecule can be described by the charge-bond 
order matrix defined in equation 4.11. The elements of this matrix can, in 
principle, be determined from a combined X-ray and neutron diffraction ex
periment. The charge-bond order matrix is not unique: the matrix depends 
on the choice of basis orbitals. The formalism for the determination of the 
matrix elements from diffraction experiments has been given by Coppens, Wil
loughby and Csonka (1971). Application of the method to molecules of the 
size of uronium nitrate, however, is very troublesome because of the large 
number of matrix elements to be determined and the strong correlations which 
exist between some matrix elements.

In uronium nitrate we therefore used a much simpler method. The 
charge-bond order matrix (population matrix) was computed by the C.N.D.O./2 
method. The axes taken as the x. y and z axis in the quantumchemical cal
culations were the a, b, and c* crystallographic axes. The uronium and nitrate 
ions were assumed to be planar. The plane of the molecule was supposed to 
be perpendicular to the c* axis (z axis of the molecular system). The orientation 
of the ions with respect to the a and b axes was. taken from the X-ray ex
periment. The calculations were restricted to a one-center model: all matrix
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elements between functions centered on different atoms were assumed to be 
zero. The elements of the population matrix which have been used in the cal
culations are given in table 5.5 (p. 69). As the molecule is planar all bond orders 
involving the pz orbital are zero.

The least-squares program (section 2.7) was modified in order to cal
culate structure factors based on aspherical electron densities. The input of the 
program includes (besides the normal input of the least-squares program) the 
population matrix elements of the molecule to be calculated. In the program 
a provision is made to take into account the scattering of the symmetry-related 
molecules in the unit cell.

A calculation of structure factors using neutron values for the position
al and thermal parameters gave an R-value of 6.6%. The regions in which ap
preciable differences between observed and calculated electron densities exist 
are evident from figure 5.5, which shows a difference Fourier-synthesis map 
made at this stage of the investigation. Comparison of this map with the one 
shown in figure 3.2.b shows that the model used gives a good description of 
the electron density in the regions of the lone-pair electrons. In the regions of 
the bonding electrons, however, large discrepancies between observed and cal
culated electron densities exist. This can be expected because of the fact that 
the two-center terms, which are neglected, play an important role in the des
cription of the overlap density. To get a proper description of the electron 
density one has to incorporate these two-center terms in the calculations.

A surprising result is that refinement of positional and thermal para
meters, using the model described in this section, gave an R-factor of 4.2%: 
nearly as good as the result of a ‘normal’ refinement (4.1%). The resulting 
positional parameters show appreciable differences from the neutron values. 
Inspection of table 5.6, which shows the resulting positional parameters, re
veals that the atoms are shifted towards the bonding region to compensate the 
excess electron density. This shift is demonstrated also in table 5.7 (p.74), 
which gives bond distances in the nitrate ion determined with different models.

A tentative conclusion is that the model based on shperical atoms con
tains mutually compensating errors, one of which is removed by the use of 
scattering factors based on aspherical atoms. This conclusion is supported by 
the difference electron density maps, in which we observe an improvement in 
regions that depend mainly on one atom (lone-pair regions). An increased dif
ference is found at the same time between observed and calculated densities 
in the bonding regions.
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Figure 5.5

Fourier synthesis map (z/c = .25) showing the difference between obser
ved and calculated electron density. The calculated density is based on asphe
rical atoms. Interval between two contour lines: .05 e Ä~3.



x/a y/b z/c

a b c a b c a b c

c .1978 .1981 .1976 .4102 .4105 .4111 .2557 .2258 .2548

N(l) .3109 .3112 .3113 .9166 .9171 .9167 .2544 .2542 .2541

N(2) .3330 .3334 .3345 .3776 .3767 .3767 .2602 .2605 .2612

N(3) .1015 .1010 .1013 .2967 .2963 .2960 .2538 .2537 .2542

0(1) .3512 .3521 .3525 .7749 .7723 .7727 .2493 .2493 .2500

0(2) .1899 .1871 .1883 .9453 .9460 .9460 .2602 .2602 .2608

0(3) .3952 .3969 .3964 .0277 .0297 .0292 .2517 .2517 .2513

0(4) 
i______

.1516 .1497 .1501 .5595 .5613 .5605 .2483 .2484 .2489

Table 5.6

Positional parameters for the heavy atoms in uronium nitrate with scattering factors based on: a: aspherical-atoms, 
b: spherical atoms (chapter II), c: neutron results (Worsham and Busing (1969)). u>
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a b c

1 o 1.231(4) 1.256(4) 1.250(1)

N(l) — 0(2) 1.202 1.233 1.227

N(l) -  0(3) 1.222 1.242 1.236

Table 5 .7.
Bond lengths (Ä)for the nitrate ion determined with different models 

a: aspherical atoms 
b: spherical atoms (chapter II) 
c: neutron values.
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SAMENVATTING

Dit proefschrift beschrijft onderzoekingen naar de moleculaire en elec- 
tronen structuur van uronium nitraat met behulp van röntgendiffractie. De 
verkregen resultaten worden, waar mogelijk, vergeleken met theoretische re
sultaten.

Hoofdstuk I geeft een kort overzicht van de twee belangrijkste aspecten 
van het werk: de bepaling van electronendichtheden door middel van diffrac- 
tietechnieken en gegevens over de moleculaire structuren van zouten van 
ureum.

Hoofdstuk II beschrijft de structuurbepaling van uronium nitraat. De 
verbinding bestaat uit uronium en nitraat ionen verbonden door een twee
dimensionaal netwerk van waterstofbruggen. Het ‘extra’ proton van het 
uronium ion bevindt zich aan het zuurstofatoom.

Hoofdstuk III geeft een overzicht van de verschillen die verwacht kun
nen worden bij vergelijking van resultaten van röntgen en neutronendiffractie 
onderzoek aan dezelfde kristalstructuur. Deze verschillen hangen samen met 
het feit dat met röntgendiffractie het ‘zwaartepunt’ van de elektronenverde
ling rond de atomen wordt bepaald. Neutronendiffractie daarentegen levert 
gegevens over plaats en beweging van de atoomkern. De (relatief kleine) ver
schillen die bestaan tussen de resultaten van het in hoofdstuk II beschreven 
structuuronderzoek en een recent gepubliceerd onderzoek met neutronen, 
kunnen hiermede grotendeels verklaard worden. Door combinatie van röntgen 
en neutronengegevens ontstaat de mogelijkheid om ladingsverschuivingen ten 
gevolge van chemische binding zichtbaar te maken. De grootste verschillen 
treden op op plaatsen die voorspeld kunnen worden met eenvoudige modellen 
voor de chemische binding.
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Hoofdstuk IV geeft de resultaten van semi-empirische quantumchemische 
berekeningen (C.N.D.O./2) aan uronium nitraat en verwante verbindingen. 
Het blijkt dat bindingshoeken in het ureum molecule en het uronium ion re
delijk goed berekend kunnen worden. Bij de bindingslengten in het nitraat en 
uronium ion wordt een relatie tussen bindingslengten en sterkte van de water- 
stofbruggen gevonden. Een en ander wordt bevestigd door resultaten van struc- 
tuuronderzoekingen aan verwante verbindingen.

Hoofdstuk V beschrijft berekeningen waarbij gebruik gemaakt wordt van 
verschillende modellen voor het verstrooiend vermogen van röntgenstraling. 
Deze verbeterde modellen zijn nodig omdat het ‘klassieke’ model (bolvormige 
electronendichtheid voor alle atomen) voor nauwkeurige bepalingen niet vol
doet. De berekening van verstrooiende vermogens uit verschillende (electronen)- 
golffuncties wordt beschreven. Gebruikmakend van de neutronen gegevens kan 
het aantal valentie-electronen bij ieder atoom bepaald worden. De verkregen 
getallen zijn in redelijke overeenstemming met theoretische waarden.
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APPENDIX I

Observed and calculated structure factors (multiplied by 10) for uronium 
nitrate. The values given are: h, k, 1, absolute value of observed and calculated 
structure factor.

0 1 1 1 5 - 1 1 6 11 6 1 6 5 27 21 2 3 2 2 PI ?°9
0 1 2 20 23 1 1 6 2 7 - 1 6 6 13 1-7 2 3 3 34 8 ft
c 1 3 1 7 - 1 1 7 11 10 -1 7 0 16 15 - 2 3 3 ?  3 33
o 1 4 23 18 1 2 0 41 49 1 7 0 13 15 -  2 3 4 269 2 53
0 1 5 2 0 -  1 2 0 39 49 1 7 1 43 34 2 3 4 PR O'7
0 1 6 9 10 - 1 2 1 18 20 - 1 7 1 54 44 - 2 3 5 15 1 3
c 1 7 2 2 1 2 1 74 74 -1 7 2 V* 15 2 3 8 19 17
0 2 9 343 353 1 2 2 44 49 - 1 7 3 30 23 -2 3 6 76 79
c 2 1 565 603 -  1 2 2 13 20 1 7 3 8 8 2 3 6 16 18
0 2 2 257 250 - 1 2 3 21 25 - 1 7 4 1 " 12 - 2 3 7 3 3
0 2 3 295 297 1 2 3 61 58 1 7 4 16 p 2 a 0 142 141
0 2 4 115 110 1 2 4 24 29 - 1 7 5 15 8 -2 4 n 146 141
0 2 5 116 116 -  1 2 4 1 6 1 8 0 125 124 - 2 4 1 74  3 245
c 2 6 40 41 -1 2 5 23 26 - 1 8 0 128 124 2 4 1 293 1 99
0 2 7 46 46 1 2 5 33 28 -1 8 1 68 65 2 4 2 86 95
0 3 1 15 21 -1 2 6 6 2 1 8 1 63 60 - 2 4 2 151 147
0 3 2 1 6 1 2 6 2 14 1 8 2 89 89 - 2 4 3 170 167
0 3 3 28 32 - 1 2 7 9 16 - 1 8 2 113 114 2 4 3 99 1 *2
0 3 4 2 1 -  1 3 0 94 97 -1 8 3 35 40 2 4 4 3P 4?
c 3 5 22 18 1 3 0 96 97 1 8 3 33 35 - 2 4 4 1 02 97
0 3 6 11 3 1 3 1 2 30 224 -1 8 4 74 69 - 2 4 5 85 78
0 3 7 18 7 - 1 3 1 264 262 - 1 9 0 33 30 2 4 5 46 4 4
0 4 0 1 10 105 - 1 3 2 65 69 1 9 0 32 30 - 2 4 6 54 69
c 4 1 138 127 1 3 2 63 62 1 9 1 24 6 - 2 4 7 29 34
0 *1 2 66 67 1 3 3 100 104 - 1 9 1 17 5 - 2 5 9 94 91
0 4 3 64 67 - 1 3 3 154 151 9 2 30 32 2 5 o 97 91
0 4 4 16 11 - 1 3 4 15 22 1 9 2 24 17 2 5 1 123 1 2 8
0 4 5 13 16 1 3 4 15 18 - 1 9 3 15 5 - 2 5 1 16 P 164
0 4 6 3 10 1 3 5 38 37 2 0 2 288 294 - 2 5 2 109 09
0 5 1 1 2 -  1 3 5 55 59 2 0 4 103 107 2 5 2 37 41
0 5 2 6 9 - 1 3 6 6 0 - 2 0 4 277 278 2 5 3 52 66
0 5 4 21 7 1 3 6 2 0 2 0 6 35 40 - 2 5 3 1 1 1 1 99
0 5 5 10 5 - 1 3 7 26 19 - 2 0 8 35 38 - 2 5 4 54 55
0 5 6 18 2 1 4 0 71 77 - 2 1 0 20 3 214 2 5 4 P n
0 6 0 282 279 -1 4 0 76 77 2 1 0 20 2 214 -2 5 5 37 87
c 6 2 226 221 1 4 1 38 36 2 1 1 347 344 2 5 5 2 14
0 6 3 22 19 -1 4 1 1 10 - 2 1 1 452 453 -2 5 6 17 1 6
0 6 4 123 123 1 4 2 29 35 -2 1 2 309 209 — 7 5 *7 12 2
0 6 5 15 16 - 1 4 2 76 76 2 1 2 115 109 2 6 0 197 1 97
0 7 1 2 3 1 4 3 35 3 8 2 1 3 160 163 - 2 6 0 197 197
0 7 3 5 6 - 1 4 4 34 42 -2 1 3 319 311 2 6 1 3 7
0 7 4 2 6 1 4 4 2 3 -2 1 4 106 106 2 6 2 132 131
c 7 5 10 3 - 1 4 5 6 4 2 1 4 41 43 - 2 6 2 192 1 95
0 8 0 115 104 1 4 5 16 24 - 2 1 5 140 143 - 2 6 3 33 26
0 8 1 236 234 1 4 6 2 4 2 1 5 61 64 2 6 3 15 4
c 8 2 92 86 - 1 4 6 14 18 - 2 1 6 43 44 - 2 6 a 129 1 19
c 8 3 160 165 - 1 4 7 2 3 2 1 6 15 16 2 6 4 67 69
c 8 4 48 50 - 1 5 0 303 295 - 2 1 7 56 60 - 2 6 5 29 29
c 9 1 10 5 1 5 0 30 3 295 - 2 1 8 16 19 - 2 6 6 59 69
0 9 2 8 2 1 5 1 123 118 2 7 0 213 212 - 7 7 0 157 151
1 0 0 69 64 - 1 5 1 143 139 - 2 2 0 213 212 2 7 0 145 151

- 1 0 9 69 64 - 1 5 2 251 246 - 2 2 1 311 346 2 7 1 193 1 93
1 0 2 95 99 1 5 2 196 193 2 2 1 253 252 - 2 7 1 213 22?

- 1 0 2 25 31 1 5 3 58 62 2 2 2 112 115 -3 7 2 152 1 65
1 0 4 54 52 -  1 5 3 98 95 - 2 2 2 209 198 2 7 7 89 93

-1 0 4 41 45 - 1 5 4 123 120 - 2 2 3 243 235 -2 7 3 169 1 73
- 1 0 6 26 30 1 5 4 75 77 2 2 3 117 116 2 7 3 1 16 1 19

1 0 6 24 19 - 1 5 5 41 45 2 2 4 48 46 -2 7 4 98 193
- 1 1 0 72 66 1 5 5 25 26 -2 2 4 106 100 2 7 4 45 41

1 1 9 73 66 - 1 5 6 38 42 -2 2 5 108 106 -  2 7 5 96 9 q
1 1 1 44 44 1 6 0 14 18 7 2 5 47 48 2 8 0 31 33

- 1 1 1 42 38 - 1 6 0 12 18 - 2 2 6 38 41 . - 2 0 0 3 3 33
- 1 1 2 44 44 - 1 6 1 99 102 2 2 6 15 17 - 2 8 1 51 44

1 1 2 39 46 1 6 1 83 87 - 2 2 7 49 45 2 8 1 44 39
1 1 3 5 12 -  1 6 2 27 28 - 2 2 8 2 17 2 P 2 31 29

- 1 1 3 1 11 - 1 6 3 75 74 - 2 3 0 555 544 - 2 8 2 25 7ft
- 1 1 4 16 q 1 6 3 46 49 2 3 0 56 1 544 -2 8 3 47 43

1 1 4 8 6 -1 6 4 22 25 2 3 1 57 69 2 8 3 76 2 9
-1 1 5 22 9 1 6 4 8 1 -2 3 1 57 59 -2 8 4 2 19

1 1 5 2 9 -  1 6 5 36 35 -2 3 2 54 3 525 - 2 Q 0 120 1 19
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2 9 9 120 119 -3 5 6 27 24 4 3 2 16 7 5 1 q 22 23
-  2 9 1 28 28 -  3 5 7 2 9 -  4 3 3 1 8 -5 1 4 112 1 1 6

2 9 1 16 16 3 6 0 19 17 -4 3 4 7 7 26 5 1 4 2 9
-2 9 2 115 116 -3 6 9 16 17 4 3 4 19 23 - 5 1 5 33 ? 9
-2 9 3 26 25 -  3 6 1 40 44 —4 3 S 22 16 -5 1 6 5 1 54

3 0 2 24 25 3 <5 1 36 31 -4 3 7 15 9 -5 1 7 18 1 7
-  3 0 2 47 59 -3 6 2 24 24 -4 3 8 21 24 -5 1 8 17 16
-3 0 4 31 30 -3 6 3 37 35 9 4 0 147 142 5 2 0 211 2° 4

3 0 4 10 6 3 6 3 7 14 -4 4 o 147 142 -5 2 n 212 2 0 4

-  3 0 6 7 5 -3 6 4 19 23 -4 4 1 290 288 — 5 2 1 84 85
-3 0 9 2 4 3 6 4 7 5 4 4 1 19 3 194 5 2 1 39 40
-3 1 0 149 150 -  3 6 5 25 16 4 4 2 63 63 5 2 2 93 9 2

3 1 0 150 150 -3 6 6 20 17 -4 4 2 195 194 -5 2 2 298 289
-  3 1 1 23 36 -3 7 0 105 10 3 -  4 4 3 249 253 - 5 2 3 1 09 1 93

3 1 1 14 6 3 7 0 108 103 4 4 3 89 91 5 2 3 18 12
-3 1 2 134 146 -3 7 1 88 83 -4 4 4 150 146 -5 2 4 231 221

3 1 2 72 75 3 7 1 62 59 4 4 9 17 21 5 2 4 32 33
-3 1 3 54 54 -3 7 2 1 16 112 -U 4 5 136 137 -5 2 5 82 00

3 1 3 2 3 3 7 2 62 62 -4 4 6 74 70 -5 2 6 105 196
-3 1 4 68 67 —3 7 3 8 3 76 >4 9 7 57 54 -5 2 7 44 3 8

3 1 4 28 25 3 7 3 25 26 -4 4 9 27 25 -5 2 9 33 37
-3 1 5 39 34 -3 7 4 82 80 -4 5 0 43 37 -5 3 0 2 11

3 1 5 2 5 -3 7 5 47 49 4 5 0 35 37 5 3 0 9 1 1
-3 1 6 27 22 -3 7 6 45 40 4 5 1 102 100 -5 3 1 16 7
-  3 1 7 10 13 3 8 0 1 42 144 —4 5 1 137 13 2 -5 3 2 8 13
-3 1 8 2 7 -3 8 0 143 144 -4 5 7 3 8 38 - 5 3 3 9 a

3 2 0 288 282 -3 8 1 81 81 4 5 2 3 4 30 5 3 3 2 2
-3 2 0 286 282 3 8 1 61 56 -4 5 3 129 128 - 5 3 4 7 11
_  o 2 1 236 24 3 3 8 2 91 88 4 5 3 60 61 5 3 4 2 8

3 2 1 160 162 -3 8 2 154 155 -4 5 4 37 35 - 5 3 7 2 3
3 2 2 114 118 - 3 8 3 72 68 4 5 4 18 18 -5 3 8 2 3

-3 2 2 336 335 -3 8 4 106 107 -4 5 5 91 91 5 4 n 71 71
-3 2 3 179 185 -3 8 5 32 33 -4 5 6 33 27 -5 4 0 74 71

3 2 3 66 67 -3 9 0 8 15 -4 5 7 55 54 -5 4 1 59 5 o
3 2 4 26 30 3 9 0 2 15 4 6 0 35 34 5 4 1 38 41

-3 2 4 193 189 -3 9 1 30 30 — 4 6 0 36 34 - 5 4 2 110 112
_  3 2 5 86 77 - 3 9 2 2 0 -4 6 1 32 25 5 4 2 23 24

3 2 5 20 20 -3 9 3 27 25 4 6 1 30 26 - 5 4 3 54 6 0
-  3 2 6 66 65 4 0 0 527 518 -4 6 2 45 48 5 4 3 11 21
-3 2 7 25 20 -4 0 0 527 518 4 6 2 13 12 - 5 4 4 96 9.6
-3 2 8 19 18 4 0 2 223 227 4 6 3 19 16 -5 4 5 28 26
-3 3 9 42 48 -4 0 2 667 676 -4 6 4 33 36 - 5 4 6 50 49

3 3 0 37 48 -4 0 4 455 443 -4 6 5 2 0 -5 4 7 7 9
3 3 1 87 86 4 0 4 61 73 -4 6 6 20 15 -5 4 8 26 16

-3 3 1 126 123 -4 0 6 176 173 -4 6 7 2 2 -5 5 0 166 162
-3 3 2 32 46 -4 0 8 53 50 -9 7 0 7 0 70 5 5 0 166 162

3 3 2 14 16 -4 1 0 34 21 4 7 0 70 70 5 5 1 5 3 64
3 3 3 37 42 4 1 0 29 21 -9 7 1 108 115 -6 5 1 «9 07

-3 3 3 103 105 -4 1 1 51 42 4 7 1 77 88 *5 5 2 21? 217
_ 3 3 4 15 16 4 1 1 10 2 -4 7 2 85 82 5 5 2 86 81

3 3 4 2 5 -4 1 2 58 48 4 7 2 44 43 - 6 5 3 107 107
_ 3 3 5 50 54 4 1 2 2 3 -4 7 3 110 112 5 5 3 2 18

3 3 5 9 17 4 1 3 24 21 — 4 7 4 67 66 - 5 5 4 168 1 7 4

-3 3 6 2 1 - 4 1 3 42 36 -4 7 5 78 81 -5 5 5 77 74
-3 3 7 24 20 -4 1 4 33 15 -4 7 6 37 40 -5 5 6 90 86
-3 3 8 7 2 4 1 4 2 9 4 8 0 27 25 -5 5 7 34 36

3 9 0 1 4 4 1 5 22 20 -4 8 0 17 25 5 6 0 6 0
-3 9 9 17 4 -4 1 5 8 5 -4 8 1 105 107 - 5 6 0 1 8 n
-3 9 1 48 50 -4 1 6 14 9 4 8 1 71 74 -5 6 1 24 34

3 4 1 2 9 -4 1 7 26 23 -4 8 2 32 36 5 6 1 22 28
3 4 2 2 8 -4 1 8 11 2 -4 8 3 93 99 5 6 2 2 4

-3 4 2 11 5 4 2 0 28 3 -4 8 4 31 34 - 5 6 4 16 7
-3 4 3 50 50 - 4 2 0 19 3 -4 8 5 54 60 -5 6 5 25 39
-3 4 4 9 7 -4 2 1 7 9 -4 9 1 2 6 -5 6 6 2 4

3 4 4 2 6 4 2 1 14 6 -4 Q 2 35 25 -5 6 7 16 20
-3 4 5 20 22 -4 2 2 28 13 -4 9 3 2 3 - 5 7 0 .20 21

3 4 5 17 10 4 2 2 18 6 5 0 0 71 7Q 5 7 0 18 21
-3 4 6 2 4 - 4 2 3 13 15 -5 0 0 71 78 5 7 1 24 2°
-3 4 7 14 7 4 2 3 12 3 -5 0 2 99 107 -5 7 1 4 3 46
- 3 5 0 66 68 -4 2 4 24 25 - 5 0 4 55 63 -5 7 2 25 28

■5 5 0 72 68 4 2 4 2 4 5 0 4 2 19 -5 7 3 51 48
3 5 1 2 5 —4 2 5 16 15 -5 0 6 11 14 -5 7 4 39 26

-3 5 1 2 14 - 4 2 6 10 16 -5 0 8 2 0 - 5 7 5 26 2 8
-3 5 2 75 74 -4 2 7 5 10 -5 1 0 96 86 -5 7 6 22 17

3 5 2 33 34 -4 2 8 4 6 5 1 0 88 86 5 8 0 9 6

-3 5 3 2 8 - 4 3 0 37 40 5 1 1 52 52 -5 8 0 2 6

3 5 3 18 5 4 3 0 40 40 -5 1 1 73 71 - 5 8 1 7 0

-3 5 4 44 48 4 3 1 2 13 -5 1 2 135 138 - 5 8 2 2 2 12
3 5 4 8 8 -4 3 1 14 20 5 1 2 30 31 —5 8 3 17 6

-3 5 5 2 2 -4 3 2 72 66 -5 1 3 58 55 _  ej 8 4 2 1 9
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CURRICULUM VITAE
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